最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

R語言rjags使用隨機效應(yīng)進行臭氧數(shù)據(jù)分析

2020-11-27 10:24 作者:拓端tecdat  | 我要投稿

原文鏈接:http://tecdat.cn/?p=6894

?

加載和格式化數(shù)據(jù)

  1. rm(list=ls())

  2. ls()

  3. ## [1] "s" "Y"

  4. dim(Y)

  5. ## [1] 1106 ? 31

  6. dim(s)

  7. ## [1] 1106 ? ?2

  8. ns ? <- nrow(Y)


  9. plot(s,axes=FALSE,xlab="",ylab="",main="Monitor locations")

abline(75,0,col=2)

abline(75,0,col=2)

在JAGS中指定模型

  1. Ozone_model <- "model{

  2. # Likelihood



  3. # Random effects

  4. for(i in 1:ns){

  5. alpha i] ~ dnorm(0, )

  6. }

  7. for(j in 1:nt){

  8. gamma j] ~ dnorm(0, )

  9. }

  10. # Priors

  11. mu ? ~ dnorm(0,0.01)



  12. # Output the parameters of interest

  13. sigma2[1] <- 1/taue

  14. ]

  15. pct[1] ? ?<- sigma2[1]/sum(sigma2[])

  16. pct[2] ? ?<- sigma2[2]/sum(sigma2[])

  17. pct[3] ? ?<- sigma2[3]/sum(sigma2[])


  18. }"


模型

  1. dat ? ?<- list(Y=Y,ns=ns,nt=nt)

  2. model1 <- jags.model(textConnection(Ozone_model),inits=init,data = dat, n.chains=1)

  3. ## Compiling model graph

  4. ## ? ?Resolving undeclared variables

  5. ## ? ?Allocating nodes

  6. ## ? ?Graph Size: 69733

  7. ##

  8. ## Initializing model

?

?

?

?

?

?

?

?

?

? summary(samp)

  1. ##

  2. ## Iterations = 10001:30000

  3. ## Thinning interval = 1

  4. ## Number of chains = 1

  5. ## Sample size per chain = 20000

  6. ##

  7. ## 1. Empirical mean and standard deviation for each variable,

  8. ## ? ?plus standard error of the mean:

  9. ##

  10. ## ? ? ? ? ? ? ? ?Mean ? ? ? SD ?Naive SE Time-series SE

  11. ## gamma[1] ? 0.792641 0.646869 4.574e-03 ? ? ?3.521e-02

  12. ## gamma[2] ?-0.005295 0.640672 4.530e-03 ? ? ?3.552e-02

  13. ## gamma[3] ? 1.637455 0.644532 4.558e-03 ? ? ?3.664e-02

  14. ## gamma[4] ?-0.193925 0.648253 4.584e-03 ? ? ?3.685e-02

  15. ## gamma[5] ?-3.486456 0.647315 4.577e-03 ? ? ?3.761e-02

  16. ## gamma[6] ?-3.208898 0.652157 4.611e-03 ? ? ?3.784e-02

  17. ## gamma[7] ?-4.598029 0.646555 4.572e-03 ? ? ?3.636e-02

  18. ## gamma[8] ?-1.152366 0.646559 4.572e-03 ? ? ?3.740e-02

  19. ## gamma[9] ? 2.394293 0.646956 4.575e-03 ? ? ?3.715e-02

  20. ## gamma[10] ?0.487923 0.644625 4.558e-03 ? ? ?3.733e-02

  21. ## gamma[11] ?0.460761 0.644827 4.560e-03 ? ? ?3.636e-02

  22. ## gamma[12] ?0.833041 0.651137 4.604e-03 ? ? ?3.649e-02

  23. ## gamma[13] -1.580735 0.651594 4.607e-03 ? ? ?3.672e-02

  24. ## gamma[14] -1.585905 0.647296 4.577e-03 ? ? ?3.760e-02

  25. ## gamma[15] -1.587356 0.647281 4.577e-03 ? ? ?3.744e-02

  26. ## gamma[16] -2.748602 0.644203 4.555e-03 ? ? ?3.740e-02

  27. ## gamma[17] -5.031267 0.647277 4.577e-03 ? ? ?3.710e-02

  28. ## gamma[18] -4.176877 0.648933 4.589e-03 ? ? ?3.655e-02

  29. ## gamma[19] -1.315643 0.648456 4.585e-03 ? ? ?3.730e-02

  30. ## gamma[20] ?1.023326 0.648118 4.583e-03 ? ? ?3.502e-02

  31. ## gamma[21] ?2.319419 0.652453 4.614e-03 ? ? ?3.625e-02

  32. ## gamma[22] ?4.252081 0.642283 4.542e-03 ? ? ?3.672e-02

  33. ## gamma[23] ?1.674201 0.648382 4.585e-03 ? ? ?3.726e-02

  34. ## gamma[24] ?3.226205 0.649139 4.590e-03 ? ? ?3.647e-02

  35. ## gamma[25] ?3.795414 0.650599 4.600e-03 ? ? ?3.717e-02

  36. ## gamma[26] ?5.847544 0.653161 4.619e-03 ? ? ?3.616e-02

  37. ## gamma[27] ?0.240722 0.651784 4.609e-03 ? ? ?3.609e-02

  38. ## gamma[28] -0.792185 0.649085 4.590e-03 ? ? ?3.542e-02

  39. ## gamma[29] ?1.314577 0.648981 4.589e-03 ? ? ?3.578e-02

  40. ## gamma[30] ?2.312463 0.643270 4.549e-03 ? ? ?3.774e-02

  41. ## gamma[31] ?1.366669 0.645759 4.566e-03 ? ? ?3.719e-02

  42. ## pct[1] ? ? 0.560401 0.011415 8.072e-05 ? ? ?8.779e-05

  43. ## pct[2] ? ? 0.413958 0.011479 8.117e-05 ? ? ?9.040e-05

  44. ## pct[3] ? ? 0.025641 0.007074 5.002e-05 ? ? ?9.037e-05

  45. ## sigma[1] ?12.948830 0.051492 3.641e-04 ? ? ?3.837e-04

  46. ## sigma[2] ?11.130828 0.250331 1.770e-03 ? ? ?1.933e-03

  47. ## sigma[3] ? 2.746672 0.378729 2.678e-03 ? ? ?4.721e-03

  48. ##

  49. ## 2. Quantiles for each variable:

  50. ##

  51. ## ? ? ? ? ? ? ? 2.5% ? ? ?25% ? ? ? 50% ? ? ?75% ? ?97.5%

  52. ## gamma[1] ?-0.49380 ?0.36017 ?0.791847 ?1.22949 ?2.05602

  53. ## gamma[2] ?-1.29551 -0.42523 ?0.001094 ?0.42257 ?1.22885

  54. ## gamma[3] ? 0.37334 ?1.20738 ?1.636656 ?2.06665 ?2.89512

  55. ## gamma[4] ?-1.48133 -0.61898 -0.193318 ?0.23839 ?1.07346

  56. ## gamma[5] ?-4.77636 -3.91313 -3.479185 -3.05709 -2.23466

  57. ## gamma[6] ?-4.48775 -3.64108 -3.207367 -2.77563 -1.93379

  58. ## gamma[7] ?-5.87435 -5.02716 -4.594350 -4.16119 -3.34211

  59. ## gamma[8] ?-2.43738 -1.57860 -1.149767 -0.71914 ?0.10173

  60. ## gamma[9] ? 1.10795 ?1.97121 ?2.394399 ?2.82109 ?3.66081

  61. ## gamma[10] -0.78684 ?0.05873 ?0.484838 ?0.91732 ?1.75985

  62. ## gamma[11] -0.81422 ?0.02778 ?0.465699 ?0.89415 ?1.72498

  63. ## gamma[12] -0.45600 ?0.40278 ?0.841823 ?1.27229 ?2.09552

  64. ## gamma[13] -2.90014 -2.00870 -1.575470 -1.14767 -0.32264

  65. ## gamma[14] -2.87864 -2.01064 -1.581978 -1.14763 -0.35096

  66. ## gamma[15] -2.86282 -2.01560 -1.583218 -1.15679 -0.32290

  67. ## gamma[16] -4.02545 -3.17798 -2.743399 -2.31751 -1.49586

  68. ## gamma[17] -6.31465 -5.46146 -5.026931 -4.59211 -3.79179

  69. ## gamma[18] -5.46025 -4.60004 -4.176324 -3.74965 -2.91543

  70. ## gamma[19] -2.60870 -1.74448 -1.305350 -0.88302 -0.06778

  71. ## gamma[20] -0.26230 ?0.59741 ?1.024962 ?1.45275 ?2.28854

  72. ## gamma[21] ?1.03505 ?1.88831 ?2.319906 ?2.75294 ?3.60079

  73. ## gamma[22] ?2.98850 ?3.82871 ?4.256085 ?4.67533 ?5.52185

  74. ## gamma[23] ?0.38791 ?1.24198 ?1.677333 ?2.10926 ?2.93725

  75. ## gamma[24] ?1.95181 ?2.79313 ?3.226292 ?3.65460 ?4.51323

  76. ## gamma[25] ?2.53324 ?3.36055 ?3.793573 ?4.23512 ?5.06812

  77. ## gamma[26] ?4.57296 ?5.41174 ?5.848862 ?6.27689 ?7.15103

  78. ## gamma[27] -1.03397 -0.18368 ?0.235404 ?0.67501 ?1.51956

  79. ## gamma[28] -2.06357 -1.22295 -0.794349 -0.35386 ?0.46984

  80. ## gamma[29] ?0.02345 ?0.88405 ?1.316177 ?1.74737 ?2.57636

  81. ## gamma[30] ?1.04671 ?1.88275 ?2.317915 ?2.74095 ?3.57092

由此看來,空間位置和誤差似乎是變異的最大來源,而且每日隨機效應(yīng)只起很小的作用。

繪制隨機效果

  1. sum <- summary(samp)

  2. names(sum)

  3. ## [1] "statistics" "quantiles" ?"start" ? ? ?"end" ? ? ? ?"thin"

  4. ## [6] "nchain"

  5. q <- sum$quantiles


  6. R ?<- Y-mean(Y,na.rm=TRUE)

  7. boxplot(R,xlab="Data",ylab="Ozone (centered)",outline=FALSE,

  8. main="Data versus posterior of the random effects")



  9. legend("topright",c("Median","95% interval"),lty=1:2,col=2,bg=gray(1),inset=0.05)

?


R語言rjags使用隨機效應(yīng)進行臭氧數(shù)據(jù)分析的評論 (共 條)

分享到微博請遵守國家法律
临城县| 河西区| 凌源市| 汾阳市| 兴安县| 佛坪县| 东兰县| 荔浦县| 徐汇区| 长春市| 舒城县| 冷水江市| 电白县| 株洲市| 登封市| 鄱阳县| 隆回县| 玉环县| 渑池县| 兰西县| 大田县| 政和县| 郧西县| 鄂伦春自治旗| 临沭县| 元氏县| 工布江达县| 视频| 龙川县| 金坛市| 上杭县| 高阳县| 金寨县| 南雄市| 图们市| 莱西市| 安达市| 深水埗区| 汶上县| 白银市| 响水县|