最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

應(yīng)用于無(wú)人機(jī)的電池建模回歸方法比較

2022-06-21 13:46 作者:comengsys-CES  | 我要投稿

Comparison of battery modeling regression methods for application to unmanned aerial vehicles

Jon Ander Martin, Justin N. Ouwerkerk, Anthony P. Lamping, Kelly Cohen

An effective battery prognostics method is fundamental for any application in which batteries have a critical role, such as in unmanned aerial vehicles. Given the batteries' variable nature, effectively predicting their End of Discharge or End of Life can become a difficult task. Therefore, developing an accurate and efficient model becomes a key step of this problem. The framework provided by traditional modeling techniques usually leads to inaccurate results, so newer state-of-the-art methodologies are needed to successfully build a model from a dataset. This paper compares the accuracy and time performance of three existing methods: a maximum likelihood optimal Support Vector Machine, a Bayesian Relevance Vector Machine, and a Fuzzy Inference System. Through this research, we aim to implement a real-time battery prognostics system in an Unmanned Aerial Vehicle. The three methods are used to model a Lithium-ion (Li-ion) battery's discharge curve while accounting for the State of Health of the battery for the estimation of voltage. This paper compares the accuracy and time performance of a maximum likelihood optimal Support Vector Machine, a Bayesian Relevance Vector Machine, and a Fuzzy Inference System for the modeling of Lithium-ion (Li-ion) batteries' discharge curve. Moreover, the model accounts for the State of Health of the battery for the estimation of voltage. We show that the three methodologies are valid for the modeling of the discharge curve with similar accuracy values. The Relevance Vector Machine proves to be the most computationally efficient method.


Data flowchart of the process

傳統(tǒng)建模技術(shù)提供的框架通常會(huì)導(dǎo)致不準(zhǔn)確的結(jié)果,因此需要更新的最先進(jìn)的方法來(lái)成功地從數(shù)據(jù)集中建立一個(gè)模型。本文比較了三種現(xiàn)有方法的準(zhǔn)確性和時(shí)間性能:最大似然最優(yōu)支持向量機(jī)、貝葉斯相關(guān)性向量機(jī)和模糊推理系統(tǒng)。通過(guò)這項(xiàng)研究,我們的目標(biāo)是在無(wú)人駕駛飛行器中實(shí)現(xiàn)一個(gè)實(shí)時(shí)的電池預(yù)知系統(tǒng)。這三種方法被用來(lái)對(duì)鋰離子電池的放電曲線(xiàn)進(jìn)行建模,同時(shí)考慮到電池的健康狀態(tài)來(lái)估計(jì)電壓。

掃碼閱讀原文

歡迎訪(fǎng)問(wèn)https://comengsys.com/ 了解更多精彩文章!

應(yīng)用于無(wú)人機(jī)的電池建?;貧w方法比較的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
临西县| 松溪县| 棋牌| 通许县| 安乡县| 乌兰浩特市| 郧西县| 安国市| 将乐县| 武宣县| 金昌市| 衡南县| 嘉义市| 乌兰浩特市| 襄城县| 昌都县| 枣庄市| 丁青县| 嘉荫县| 灵寿县| 夏邑县| 广宁县| 德昌县| 鹤庆县| 碌曲县| 乌恰县| 泾阳县| 蒲城县| 岑溪市| 泗水县| 黑山县| 土默特右旗| 建平县| 宜兰县| 资源县| 石屏县| 威海市| 日喀则市| 蒲江县| 茌平县| 沁水县|