【優(yōu)化求解】基于教與學(xué)的優(yōu)化算法matlab源碼
?1 教與學(xué)的優(yōu)化算法
簡(jiǎn)要分析了群智能優(yōu)化算法的研究現(xiàn)狀,重點(diǎn)對(duì)"教與學(xué)"優(yōu)化算法作了詳細(xì)的描述,并分析了"教與學(xué)"算法的性能及其優(yōu)缺點(diǎn);隨后介紹了幾種改進(jìn)的"教與學(xué)"優(yōu)化算法,對(duì)"教與學(xué)"優(yōu)化算法的應(yīng)用研究情況進(jìn)行了論述。最后,說(shuō)明了目前"教與學(xué)"優(yōu)化算法中存在的問題,并指出"教與學(xué)"優(yōu)化算法未來(lái)的研究方向。


2 部分代碼
```matlab
clear all?
clc
Population=40; % Number of Popultaion
Function_name='F12'; % Name of the test function that can be from F1 to F23?
Max_iteration=50; % Maximum numbef of iterations
% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_pos,Best_score,cg_curve,P,f] = TLBO(fobj,lb,ub,dim,Population,Max_iteration);
figure('Position',[500 500 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Test function')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
grid off
%Draw objective space
subplot(1,2,2);
plot(cg_curve,'Color','r')
title('Convergence curve')
xlabel('Iteration');
ylabel('Best score obtained so far');
axis tight
grid off
box on
legend('TLBO')
display(['The best solution obtained by TLBO is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton found by TLBO is : ', num2str(Best_score)]);
```
3 仿真結(jié)果

4 參考文獻(xiàn)
[1]拓守恒, 雍龍泉, 鄧方安. “教與學(xué)”優(yōu)化算法研究綜述[J]. 計(jì)算機(jī)應(yīng)用研究, 2013.
