最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

Lab Exercise 1

2022-11-09 16:09 作者:溫柔的煙火  | 我要投稿

一. 簡(jiǎn)答題(共1題,100分)

1.?(簡(jiǎn)答題)

Students are required to submit the solutions of 4th, 5th and 6th?before 0:00am on September 19th. You should only upload two files (do not zip), your?notebook ".ipynb" file?and?PDF file generated after notebook execution.?


You may follow this instructions to finish the lab execise:


1.Confirm whether anaconda is installed. If not, please go to the official website?https://www.anaconda.com/?and follow the installation instructions there.


2. Use conda to create a virtual environment named?image_processing_2022. (Note: If create?image_processing_2022?by cloning the?base environment it may save lots of efforts to download and install default modules.)


3. Activate the image_processing_2022 virtual environment, install scikit-image (or OpenCV, etc., you can choose freely) and necessary dependent modules in this environment.


4. Use skimage/opencv to read any image from the local hard disk and display it in the notebook (you can use matplotlib)


5. Display the images in red, green and blue single grayscale channel respectively (three grayscale images), and then display them in red, green and blue multi-channels separately (three RGB images, each containing only one non-zero color channel), and then perform an invert color operation on each non-zero color channel, such as the red channel Red(x,y)=255?Red(x,y). Together with the original image, Display four images in a 2x2 grid. The result should be similar as follows:


給的示例


6. Use the mask to draw the image into a picture frame (preferably not a simple shape, e.g. rectangle), the picture frame only shows a part of the original picture (consider using the alpha channel of RGBA, preferably not white). Explain how you did it.


給的示例

答案(并不是完全對(duì),僅供參考優(yōu)化)


from skimage import io,data,color

image=io.imread("D:\\pythonProject\\image\\com\\monan\\image\\origanal.png")

io.imshow(image)

結(jié)果

import CV2

import numpy as np

import matplotlib.pyplot as plt

from skimage import io,data,color

image=CV2.imread("D:\\pythonProject\\image\\com\\monan\\image\\origanal.png")

image4=io.imread("D:\\pythonProject\\image\\com\\monan\\image\\origanal.png")

B,G,R= CV2.split(image)

#CV2.imshow("Blue", B)

# CV2.imshow("Green", G)

# CV2.imshow("Red", R)

# CV2.waitKey()

# CV2.destroyAllWindows()

CV2.imwrite("D:\\pythonProject\\image\\com\\monan\\image\\B-image.png",B)

CV2.imwrite("D:\\pythonProject\\image\\com\\monan\\image\\R-image.png",R)

CV2.imwrite("D:\\pythonProject\\image\\com\\monan\\image\\G-image.png",G)

image_b=io.imread("D:\\pythonProject\\image\\com\\monan\\image\\B-image.png")

io.imshow(image_b)

結(jié)果

image_r=io.imread("D:\\pythonProject\\image\\com\\monan\\image\\R-image.png")

io.imshow(image_r)

結(jié)果


image_g=io.imread("D:\\pythonProject\\image\\com\\monan\\image\\G-image.png")

io.imshow(image_g)

結(jié)果

blue = np.zeros_like(image)

blue[..., 0] = image[..., 0]

# CV2.imshow('blue', blue)


green = np.zeros_like(image)

green[..., 1] = image[..., 1]

# CV2.imshow('green', green)


red = np.zeros_like(image)

red[..., 2] = image[..., 2]

# CV2.imshow('red', red)



#對(duì)上面的圖像進(jìn)行單色反色操作

h, w, channels = blue.shape[0:3]

# print(h,w,channels)

for row in range(h):

? ? ? ? for col in range(w):

? ? ? ? ? ? pixel = image[row, col, 0]

? ? ? ? ? ? blue[row, col, 0] = 255-pixel

# CV2.imshow("blue",blue)

h, w, channels = red.shape[0:3]

for row in range(h):

? ? ? ? for col in range(w):

? ? ? ? ? ? pixel = image[row, col, 2]

? ? ? ? ? ? red[row, col, 2] = 255-pixel

? ? ? ? ? ??

# CV2.imshow("red",red)


h, w, channels = green.shape[0:3]

for row in range(h):

? ? ? ? for col in range(w):

? ? ? ? ? ? pixel = image[row, col, 1]

? ? ? ? ? ? green[row, col, 1] = 255-pixel

? ? ? ? ? ??

# CV2.imshow("green",green)


CV2.imwrite("D:\\pythonProject\\image\\com\\monan\\image\\blue-translate.png",blue)

CV2.imwrite("D:\\pythonProject\\image\\com\\monan\\image\\red-translate.png",red)

CV2.imwrite("D:\\pythonProject\\image\\com\\monan\\image\\green-translate.png",green)

plt.figure()#創(chuàng)建畫布

#image是原始圖像

#但是是空白的

image1=io.imread("D:\\pythonProject\\image\\com\\monan\\image\\blue-translate.png")

image2=io.imread("D:\\pythonProject\\image\\com\\monan\\image\\red-translate.png")

image3=io.imread("D:\\pythonProject\\image\\com\\monan\\image\\green-translate.png")

plt.subplot(2,2,1)

plt.imshow(image4)

plt.subplot(2,2,2)

plt.imshow(image1)

plt.subplot(2,2,3)

plt.imshow(image2)

plt.subplot(2,2,4)

plt.imshow(image3)

plt.show()

結(jié)果

coordinates = [[[40,20], [120,30],[140,60], [85,110], [35,120]]]

coordinates = np.array(coordinates)

print(coordinates)

mask1 = np.zeros(img.shape[:2], dtype=np.int8)

print(mask1)

mask1 = cv.fillPoly(mask1, coordinates,255)

print(mask1)

print(img.shape[:2])

show(mask1)

結(jié)果

import CV2 as cv

import numpy as np

from PIL import Image

import matplotlib.pyplot as plt

import pycocotools.mask as mask_util

def show(img):

? ? if img.ndim==2:

? ? ? ? plt.imshow(img,cmap='gray')

? ? else:

? ? ? ? plt.imshow(cv.cvtColor(img,cv.COLOR_BGR2RGB))

? ? plt.show()? ??

? ??

img = cv.imread('image/origanal.png')

# img.shape (127, 161, 3)

? ? ? ?

mask_threth = 50


# 先畫掩膜

coordinates = [[[40,20], [120,30],[140,60], [85,110], [35,120]]]

coordinates = np.array(coordinates)

mask1 = np.zeros(img.shape[:2], dtype=np.int8)

mask1 = cv.fillPoly(mask1, coordinates, 255)

show(mask1)

? ??

結(jié)果

image = cv.add(img, np.zeros(np.shape(img), dtype=np.uint8), mask=mask1)

show(image)

結(jié)果

Explain how did it

You import the image, then create a two-dimensional matrix to store the coordinates, and then get the width and height of the image to be processed。Using fillPoly,fill the imaginary border of the point you want to depict with black to form images.Using image motion ,add the two pictures togetheraddition。Because the pictures are only 255 or 0 ,so the overlapping black areas must be black, and the white brush areas remain as they are


Lab Exercise 1的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
隆回县| 青岛市| 慈溪市| 天镇县| 蒙阴县| 中山市| 昭苏县| 河津市| 蒙阴县| 来安县| 建湖县| 大埔区| 新巴尔虎右旗| 西贡区| 尼玛县| 绍兴县| 岚皋县| 通辽市| 福鼎市| 曲水县| 贺兰县| 额济纳旗| 漳州市| 马公市| 荥经县| 曲松县| 乌鲁木齐县| 大港区| 隆德县| 定州市| 黔东| 石泉县| 新干县| 开阳县| 泰宁县| 夏邑县| 高邮市| 柳江县| 鹤峰县| 榆树市| 云龙县|