最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

泊松分布

2022-04-16 22:50 作者:匆匆-cc  | 我要投稿

????????泊松分布滿足表達式:

P_%7B(x%3Dk)%7D%3D%5Cfrac%7B%5Clambda%5Eke%5E%7B-%5Clambda%7D%7D%7Bk!%7D%2Ck%3D0%2C1%2C2%2C%E2%80%A6

概率和

????????我們需要先了解泰勒展開式

????????根據(jù)y%3De%5Exx%3D0處的泰勒展開式,有

e%5Ex%3D1%2B%5Cfrac%7Bx%7D%7B1!%7D%2B%5Cfrac%7Bx%5E2%7D%7B2!%7D%2B%5Cfrac%7Bx%5E3%7D%7B3!%7D%2B%E2%80%A6

????????所以,

%5Cbegin%7Balign%7D%0A%5Csum%5E%7B%2B%5Cinfty%7D_%7Bk%3D0%7DP_%7B(x%3Dk)%7D%26%3D%5Csum%5E%7B%2B%5Cinfty%7D_%7Bk%3D0%7D%5Cfrac%7B%5Clambda%5Eke%5E%7B-%5Clambda%7D%7D%7Bk!%7D%5C%5C%0A%26%3De%5E%7B-%5Clambda%7D%5Csum%5E%7B%2B%5Cinfty%7D_%7Bk%3D0%7D%5Cfrac%7B%5Clambda%5Ek%7D%7Bk!%7D%5C%5C%0A%26%3De%5E%7B%5Clambda%7D%5Ccdot%20e%5E%7B%5Clambda%7D%5C%5C%0A%26%3D1%0A%5Cend%7Balign%7D

期望

????????同樣需要了解一個泰勒展開式。

????????根據(jù)y%3Dxe%5Exx%3D0處的泰勒展開式,有

xe%5Ex%3D0%2B%5Cfrac%7B1%5Ccdot%20x%7D%7B1!%7D%2B%5Cfrac%7B2%5Ccdot%20x%5E2%7D%7B2!%7D%2B%5Cfrac%7B3%5Ccdot%20x%5E3%7D%7B3!%7D%2B%E2%80%A6

????????所以,

%5Cbegin%7Balign%7D%0AE(x)%26%3D%5Csum%5E%7B%2B%5Cinfty%7D_%7Bk%3D0%7D%5Cfrac%7B%5Clambda%5Eke%5E%7B-%5Clambda%7D%7D%7Bk!%7D%5Ccdot%20k%5C%5C%0A%26%3De%5E%7B-%5Clambda%7D%5Csum%5E%7B%2B%5Cinfty%7D_%7Bk%3D0%7D%5Cfrac%7Bk%5Clambda%5Ek%7D%7Bk!%7D%5C%5C%0A%26%3De%5E%7B-%5Clambda%7D%5Ccdot%5Clambda%20e%5E%5Clambda%5C%5C%0A%26%3D%5Clambda%0A%5Cend%7Balign%7D

方差

????????根據(jù)y%3Dx(x%2B1)e%5Exx%3D0處的泰勒展開式,有

x(x%2B1)e%5Ex%3D0%2B%5Cfrac%7B1%5E2%5Ccdot%20x%7D%7B1!%7D%2B%5Cfrac%7B2%5E2%5Ccdot%20x%5E2%7D%7B2!%7D%2B%5Cfrac%7B3%5E2%5Ccdot%20x%5E3%7D%7B3!%7D%2B%E2%80%A6

? ? ????所以,

%5Cbegin%7Balign%7D%0AD(x)%26%3D%5Csum%5E%7B%2B%5Cinfty%7D_%7Bk%3D0%7D%5Cfrac%7B%5Clambda%5Eke%5E%7B-%5Clambda%7D%7D%7Bk!%7D%5Ccdot%20k%5E2-E%5E2(x)%5C%5C%0A%26%3De%5E%7B-%5Clambda%7D%5Csum%5E%7B%2B%5Cinfty%7D_%7Bk%3D0%7D%5Cfrac%7Bk%5E2%5Clambda%5Ek%7D%7Bk!%7D-E%5E2(x)%5C%5C%0A%26%3De%5E%7B-%5Clambda%7D%5Ccdot%5Clambda(%5Clambda%2B1)%20e%5E%5Clambda-%5Clambda%5E2%5C%5C%0A%26%3D%5Clambda%0A%5Cend%7Balign%7D

????????關(guān)于y%3Dx(x%2B1)e%5Exx%3D0處的泰勒展開式,我們有:

y%3D(x%5E2%2Bx)e%5Ex

y'%3D(x%5E2%2B3x%2B1)e%5Ex

y''%3D(x%5E2%2B5x%2B4)e%5Ex

y'''%3D(x%5E2%2B7x%2B9)e%5Ex

%E2%80%A6

????????可用數(shù)學(xué)歸納法證明下式:

x(x%2B1)e%5Ex%3D0%2B%5Cfrac%7B1%5E2%5Ccdot%20x%7D%7B1!%7D%2B%5Cfrac%7B2%5E2%5Ccdot%20x%5E2%7D%7B2!%7D%2B%5Cfrac%7B3%5E2%5Ccdot%20x%5E3%7D%7B3!%7D%2B%E2%80%A6

? ? ? ? 再次聲明:此類專題一般僅從分布列要求、期望、方差以及簡單性質(zhì)幾個角度來研究,其余的累積分布函數(shù)、特征函數(shù)等內(nèi)容,恕不討論。

????????其目的,是為了練習(xí)與高等數(shù)學(xué)接軌的部分知識,而不是系統(tǒng)地學(xué)習(xí)概率統(tǒng)計。

泊松分布的評論 (共 條)

分享到微博請遵守國家法律
勃利县| 平顺县| 信阳市| 九龙坡区| 蓝山县| 易门县| 宁城县| 盱眙县| 富顺县| 富蕴县| 宝应县| 洞口县| 萨嘎县| 盖州市| 苏尼特右旗| 潞城市| 雷山县| 南木林县| 水富县| 花莲市| 左云县| 康马县| 阳泉市| 舒城县| 将乐县| 卓资县| 丹江口市| 巴彦淖尔市| 维西| 兰州市| 元阳县| 宝兴县| 高州市| 长沙县| 海阳市| 新乡县| 武清区| 渭源县| 广汉市| 托克逊县| 余庆县|