【標(biāo)題速讀】【Nano_letter】【2022年】【12月】

聲明:本專欄主要對(duì)生命科學(xué)領(lǐng)域的一些期刊文章標(biāo)題進(jìn)行翻譯,所有內(nèi)容均由本人手工整理翻譯。由于本人專業(yè)為生物分析相關(guān),其他領(lǐng)域如果出現(xiàn)翻譯錯(cuò)誤請(qǐng)諒解。

Artwork created by Jingang Li as part of ACS' DEIR Cover Art series. A high school student realizes that the marble game he played as a child is governed by fundamental laws of physics, which ignites his interest in science. In his Editorial, he reflects on his path from an economically disadvantaged family in a small village to top research universities without early educational resources.
由 Jinang Li 創(chuàng)作的藝術(shù)品,屬于 ACS DEIR 封面藝術(shù)系列的一部分。?一名高中生意識(shí)到他小時(shí)候玩的彈珠游戲是受基本物理定律支配的,這激發(fā)了他對(duì)科學(xué)的興趣。?在他的社論中,他反思了自己從一個(gè)小村莊的經(jīng)濟(jì)困難家庭到?jīng)]有早期教育資源的頂尖研究型大學(xué)的道路。
An array of on-demand single-photon sources deterministically integrated with silicon-based photonics, created from the hybrid integration of 2D materials with silicon nitride resonators.
一系列按需單光子源與硅基光子學(xué)確定性集成,通過 2D 材料與氮化硅諧振器的混合集成而創(chuàng)建。

The strong optically confined electric field occurring in nanogaps of plasma-jet reduced truncated coupled nanogold intensifies the scattering Raman (enhancement factor is as high as 107) signal of DNA genomic fragments, enabling accurate and swift recognition of bacterial species operating at nanovolume biosamples quantity.
等離子射流減少的截?cái)囫詈霞{米金的納米間隙中產(chǎn)生的強(qiáng)光學(xué)約束電場(chǎng)增強(qiáng)了 DNA 基因組片段的散射拉曼(增強(qiáng)因子高達(dá) 107)信號(hào),從而能夠準(zhǔn)確、快速地識(shí)別納米體積生物樣本量下的細(xì)菌種類。

Using a state-of-the-art technique, a scanning tunneling microscope equipped with electron spin resonance and vector magnetic fields, the authors demonstrate the use of single-atom hyperfine spectrum as a powerful tool to probe the ground-state electronic structure and the atomic-scale chemical environments.
作者使用最先進(jìn)的技術(shù),即配備電子自旋共振和矢量磁場(chǎng)的掃描隧道顯微鏡,展示了使用單原子超精細(xì)光譜作為探測(cè)基態(tài)電子結(jié)構(gòu)和 原子尺度的化學(xué)環(huán)境。

Magnetophotonic nanoantennas enable magnetic memory bit downscaling and reduce the light power for demagnetization. Individual TbCo ferrimagnets of the top of plasmon nanocones demagnetize 3x more efficiently due to light pulse concertation (top surface). With spacing between the nanoantennas (bottom surface), we can control the degree of demagnetization.
磁光子納米天線能夠縮小磁存儲(chǔ)位尺寸并降低消磁的光功率。?由于光脈沖協(xié)同作用(頂部表面),等離子體納米錐頂部的各個(gè) TbCo 亞鐵磁體的消磁效率提高了 3 倍。?通過納米天線之間的間距(底面),我們可以控制退磁程度。

Atomic defects in a MnBi6Te10 superlattice lead to a delicate ferromagnetic topological insulator phase.
MnBi6Te10 超晶格中的原子缺陷導(dǎo)致了微妙的鐵磁拓?fù)浣^緣體相。

The development of in situ synchrotron radiation soft X-ray absorption spectroscopy provides possibilities for monitoring the photogenerated electron flow between different functional units in photocatalysis. The technique revealed the dynamic interfacial charge transfer from CeO2 to Ni sites via rGO channel and ultimately to the N2 molecule during N2 photofixation.
原位同步輻射軟X射線吸收光譜的發(fā)展為監(jiān)測(cè)光催化中不同功能單元之間的光生電子流提供了可能性。?該技術(shù)揭示了在 N2 光固定過程中,動(dòng)態(tài)界面電荷通過 rGO 通道從 CeO2 轉(zhuǎn)移到 Ni 位點(diǎn),并最終轉(zhuǎn)移到 N2 分子。

An efficient phonon cascade process and a giant Huang?Rhys factor are identified in Cu-doped CdSe colloidal quantum wells, which is attributed to the intense and strong electron?phonon interaction process during the hot electron relaxation.
Cu摻雜CdSe膠體量子阱中存在有效的聲子級(jí)聯(lián)過程和巨大的黃-里斯因子,這歸因于熱電子弛豫過程中強(qiáng)烈的電子-聲子相互作用過程。
A micropatterning approach is exploited to make significant improvements in the interfacial property at the junction between the solid-state electrolyte and electrodes in lithium-ion batteries. Variations in microchannels formed between square patterns help to boost deliverable capacities of the solid-state batteries.
利用微圖案化方法顯著改善鋰離子電池中固態(tài)電解質(zhì)和電極之間的界面性能。?方形圖案之間形成的微通道的變化有助于提高固態(tài)電池的可交付容量。

Phonon polaritons open a new route for manipulating light at the nanoscale. However, their optical loss hinders light manipulation with high efficiency. Here, we demonstrate that the isotope-enriched Mo element enables ultra-low-loss phonon polaritons in the α-MoO3, which would facilitate the fabrication of high-performance integrated photonics and quantum optics devices.
聲子極化激元開辟了一條在納米尺度操縱光的新途徑。?然而,它們的光學(xué)損耗阻礙了高效率的光操縱。?在這里,我們證明富含同位素的 Mo 元素可以在 α-MoO3 中實(shí)現(xiàn)超低損耗的聲子極化激元,這將有助于高性能集成光子學(xué)和量子光學(xué)器件的制造。
1.Single Skyrmion Generation via a Vertical Nanocontact in a 2D Magnet-Based Heterostructure.
通過二維磁體異質(zhì)結(jié)構(gòu)中的垂直納米接觸產(chǎn)生單斯格明子。

2.Tip-Induced and Electrical Control of the Photoluminescence Yield of Monolayer WS2.
單層 WS2 光致發(fā)光產(chǎn)率的尖端誘導(dǎo)和電控制。

3.An Ultra-steep Slope Two-dimensional Strain Effect Transistor.
超陡斜率二維應(yīng)變效應(yīng)晶體管。

4.Visualizing Giant Ferroelectric Gating Effects in Large-Scale WSe2/BiFeO3 Heterostructures.
可視化大規(guī)模 WSe2/BiFeO3 異質(zhì)結(jié)構(gòu)中的巨型鐵電門效應(yīng)。

5.Chemically Induced Activity Recovery of Isolated Lithium in Anode-free Lithium Metal Batteries.
無陽(yáng)極鋰金屬電池中分離鋰的化學(xué)誘導(dǎo)活性恢復(fù)。

6.Light-Driven Ultrafast Polarization Manipulation in a Relaxor Ferroelectric.
弛豫鐵電體中的光驅(qū)動(dòng)超快偏振操縱。

7.Selectively Addressing Plasmonic Modes and Excitonic States in a Nanocavity Hosting a Quantum Emitter.
選擇性地解決承載量子發(fā)射器的納米腔中的等離子體模式和激子態(tài)。

8.Preparation of Aerogel-like Silica Foam with the Hollow-Sphere-Based 3D Network Skeleton by the Cast-in Situ Method and Ambient Pressure Drying.
采用原位鑄造法和常壓干燥制備具有空心球基 3D 網(wǎng)絡(luò)骨架的氣凝膠狀二氧化硅泡沫。

9.Tailoring Bulk Photovoltaic Effects in Magnetic Sliding Ferroelectric Materials.
定制磁滑動(dòng)鐵電材料中的體光伏效應(yīng)。

10.Anionic Flow Valve Across Oxide Heterointerfaces by Remote Electron Doping.
通過遠(yuǎn)程電子摻雜跨氧化物異質(zhì)界面的陰離子流閥。

11.One-Lead Single-Electron Source with Charging Energy.
具有充電能量的單引線單電子源。

12.Curvature-Induced One-Dimensional Phonon Polaritons at Edges of Folded Boron Nitride Sheets.
折疊氮化硼片邊緣的曲率誘導(dǎo)一維聲子極化子。

13.Biobased Self-Growing Approach toward Tailored, Integrated High-Performance Flexible Lithium-Ion Battery.
定制、集成高性能柔性鋰離子電池的生物基自生長(zhǎng)方法。

14.Surficial Oxidation of Phosphorus for Strengthening Interface Interaction and Enhancing Lithium-Storage Performance.
磷的表面氧化增強(qiáng)界面相互作用并提高鋰存儲(chǔ)性能。

15.Engineering Biomimetic Nanostructured “Melanosome” Textiles for Advanced Solar-to-Thermal Devices.
用于先進(jìn)太陽(yáng)能熱能設(shè)備的仿生納米結(jié)構(gòu)“黑素體”紡織品。

16.Quantum Plasmonic Nonreciprocity in Parity-Violating Magnets.
宇稱破壞磁體中的量子等離子體非互易性。

17.Real-Space Observations of Three-Dimensional Antiskyrmions and Skyrmion Strings.
三維反斯格明子和斯格明子弦的真實(shí)空間觀測(cè)。

18.Double-Cavity Modulation of Exciton Polaritons in CsPbBr3 Microwire.
CsPbBr3 微線中激子極化子的雙腔調(diào)制。

19.Crystallization Kinetics of a Liquid-Forming 2D Coordination Polymer.
液體形成的二維配位聚合物的結(jié)晶動(dòng)力學(xué)。

20.Grain-Boundary-Induced Ultrasensitive Molecular Detection of Graphene Film.
石墨烯薄膜的晶界誘導(dǎo)超靈敏分子檢測(cè)。

21.Axial-Bonding-Driven Dimensionality Effect on the Charge-Density Wave in NbSe2.
軸向鍵合驅(qū)動(dòng)的維數(shù)對(duì) NbSe2 中電荷密度波的影響。

22.Biomimetic Microadhesion Guided Instant Spinning.
仿生微粘附引導(dǎo)即時(shí)旋轉(zhuǎn)。

23.Ferroelectric Ordering in Nanosized PbTiO3.
納米 PbTiO3 中的鐵電有序化。

24.Alternating Magnetic Field Induced Magnetic Heating in Ferromagnetic Cobalt Single-Atom Catalysts for Efficient Oxygen Evolution Reaction.
鐵磁鈷單原子催化劑中的交變磁場(chǎng)感應(yīng)磁加熱可實(shí)現(xiàn)高效的析氧反應(yīng)。

25.Plasmon Squeezing in Single-Molecule Junctions.
單分子連接中的等離子體激元擠壓。

26.Molecular Planarization of Raman Probes to Avoid Background Interference for High-Precision Intraoperative Imaging of Tumor Micrometastases and Lymph Nodes.
拉曼探針的分子平面化以避免背景干擾,用于腫瘤微轉(zhuǎn)移和淋巴結(jié)的高精度術(shù)中成像。

27.Overall Design of Anode with Gradient Ordered Structure with Low Iridium Loading for Proton Exchange Membrane Water Electrolysis.
質(zhì)子交換膜水電解低銥負(fù)載梯度有序結(jié)構(gòu)陽(yáng)極總體設(shè)計(jì)。

28.A pH-Responsive Covalent Nanoscale Device Enhancing Temporal and Force Stability for Specific Tumor Imaging.
一種 pH 響應(yīng)共價(jià)納米級(jí)裝置,增強(qiáng)特定腫瘤成像的時(shí)間和力穩(wěn)定性。

29.Bamboo-like Vortex Chains Confined in Canals with Suppressed Superconductivity and Standing Waves of Quasiparticles.
限制在運(yùn)河中的竹狀渦旋鏈具有抑制超導(dǎo)性和準(zhǔn)粒子駐波。

30.Correlations between Cascaded Photons from Spatially Localized Biexcitons in ZnSe.
ZnSe 中空間局域雙激子的級(jí)聯(lián)光子之間的相關(guān)性。

31.Structured Electrode Additive Manufacturing for Lithium-Ion Batteries.
鋰離子電池的結(jié)構(gòu)化電極增材制造。

32.Parabolic Potential Surfaces Localize Charge Carriers in Nonblinking Long-Lifetime “Giant” Colloidal Quantum Dots.
拋物線勢(shì)面將電荷載流子定位在不閃爍的長(zhǎng)壽命“巨型”膠體量子點(diǎn)中。

33.Thickness-Tunable Growth of Composition-Controllable Two-Dimensional FexGeTe2.
成分可控的二維 FexGeTe2 的厚度可調(diào)生長(zhǎng)。

34.Air-Conditioned Masks Using Nanofibrous Networks for Daytime Radiative Cooling.
使用納米纖維網(wǎng)絡(luò)進(jìn)行日間輻射冷卻的空調(diào)面罩。

35.Nanoscale Measurements of Charge Transfer at Cocatalyst/Semiconductor Interfaces in BiVO4 Particle Photocatalysts.
BiVO4 顆粒光催化劑中助催化劑/半導(dǎo)體界面電荷轉(zhuǎn)移的納米級(jí)測(cè)量。

36.Charging and Charged Species in Quantum Dot Light-Emitting Diodes.
量子點(diǎn)發(fā)光二極管中的充電和帶電物質(zhì)。

37.Regulating the FeN4 Moiety by Constructing Fe–Mo Dual-Metal Atom Sites for Efficient Electrochemical Oxygen Reduction.
通過構(gòu)建 Fe-Mo 雙金屬原子位點(diǎn)調(diào)節(jié) FeN4 部分以實(shí)現(xiàn)高效電化學(xué)氧還原。

38.Efficient Avalanche Photodiodes with a WSe2/MoS2 Heterostructure via Two-Photon Absorption.
通過雙光子吸收具有 WSe2/MoS2 異質(zhì)結(jié)構(gòu)的高效雪崩光電二極管。

39.Nanoscale Electric Field Probing in a Single Nanowire with Raman Spectroscopy and Elastic Strain.
利用拉曼光譜和彈性應(yīng)變對(duì)單納米線進(jìn)行納米級(jí)電場(chǎng)探測(cè)。

40.Velocity Dependence of Moiré Friction.
莫爾摩擦的速度依賴性。

41.Area-Independence of the Biexciton Oscillator Strength in CdSe Colloidal Nanoplatelets.
CdSe 膠體納米片中雙激子振蕩器強(qiáng)度的面積無關(guān)性。

42.Assessment of Active Dopants and p–n Junction Abruptness Using In Situ Biased 4D-STEM.
使用原位偏置 4D-STEM 評(píng)估活性摻雜劑和 p-n 結(jié)突變性。

43.Mesoscale Mass Transport Enhancement on Well-Defined Porous Carbon Platform for Electrochemical H2O2 Synthesis.
用于電化學(xué) H2O2 合成的明確多孔碳平臺(tái)上的介觀傳質(zhì)增強(qiáng)。

44.SiOxCy Microspheres with Homogeneous Atom Distribution for a High-Performance Li-Ion Battery.
用于高性能鋰離子電池的具有均勻原子分布的 SiOxCy 微球。

45.Photoaccelerated Water Dissociation Across One-Atom-Thick Electrodes.
單原子厚電極上的光加速水解離。

46.Formation of In-Plane Semiconductor–Metal Contacts in 2D Platinum Telluride by Converting PtTe2 to Pt2Te2.
通過將 PtTe2 轉(zhuǎn)化為 Pt2Te2 在二維碲化鉑中形成面內(nèi)半導(dǎo)體-金屬接觸。

47.High-Mobility Hole Transport in Single-Grain PbSe Quantum Dot Superlattice Transistors.
單晶 PbSe 量子點(diǎn)超晶格晶體管中的高遷移率空穴傳輸。

48.Three-Dimensional Nanopillar Arrays-Based Efficient and Flexible Perovskite Solar Cells with Enhanced Stability.
基于三維納米柱陣列的高效柔性鈣鈦礦太陽(yáng)能電池,穩(wěn)定性增強(qiáng)。

49.Thickness-Sensing Sandwiched Plasmonic Biosensors Enable Label-Free Naked-Eye Antibody Quantification.
厚度傳感夾層等離子體生物傳感器可實(shí)現(xiàn)無標(biāo)記肉眼抗體定量。

50.Morphology-Controlled Reststrahlen Band and Infrared Plasmon Polariton in GaN Nanostructures.
GaN 納米結(jié)構(gòu)中形態(tài)控制的靜止帶和紅外等離激元極化子。

51.Na–K Alloy Anode for High-Performance Solid-State Sodium Metal Batteries.
用于高性能固態(tài)鈉金屬電池的Na-K合金陽(yáng)極。

52.Tryptophan-Modulated Nanoscale Metal–Organic Framework for Coordinated Loading of Biomolecules for Cascade Production of Reactive Oxygen and Nitrogen Species.
色氨酸調(diào)制的納米級(jí)金屬有機(jī)框架,用于協(xié)調(diào)負(fù)載生物分子,用于級(jí)聯(lián)生產(chǎn)活性氧和氮。

53.Visualizing Large Facet-Dependent Electronic Tuning in Monolayer WSe2 on Au Surfaces.
可視化金表面單層 WSe2 中大面相關(guān)的電子調(diào)諧。

54.Experimental Realization of a Skyrmion Circulator.
斯格明子循環(huán)器的實(shí)驗(yàn)實(shí)現(xiàn)。

55.Graphene-Based Quantum Hall Interferometer with Self-Aligned Side Gates.
具有自對(duì)準(zhǔn)側(cè)門的基于石墨烯的量子霍爾干涉儀。

56.Giant Second Harmonic Generation from Membrane Metasurfaces.
膜超表面產(chǎn)生巨大的二次諧波。

57.Quasicylindrical Waves for Ordered Nanostructuring.
用于有序納米結(jié)構(gòu)的準(zhǔn)圓柱波。

58.Dual Biomimetic Recognition-Driven Plasmonic Nanogap-Enhanced Raman Scattering for Ultrasensitive Protein Fingerprinting and Quantitation.
雙仿生識(shí)別驅(qū)動(dòng)的等離激元納米間隙增強(qiáng)拉曼散射,用于超靈敏蛋白質(zhì)指紋識(shí)別和定量。

59.Single Low-Dose Nanovaccine for Long-Term Protection against Anthrax Toxins.
單一低劑量納米疫苗可長(zhǎng)期預(yù)防炭疽毒素。

60.Model for Nanopore Formation in Two-Dimensional Materials by Impact of Highly Charged Ions.
通過高電荷離子的影響在二維材料中形成納米孔的模型。

61.Bimetal Substitution Enabled Energetic Polyanion Cathode for Sodium-Ion Batteries.
用于鈉離子電池的雙金屬替代高能聚陰離子陰極。

62.High Seebeck Coefficient Achieved by Multinuclear Organometallic Molecular Junctions.
通過多核有機(jī)金屬分子結(jié)實(shí)現(xiàn)高塞貝克系數(shù)。

63.Modulation Doping of Single-Layer Semiconductors for Improved Contact at Metal Interfaces.
單層半導(dǎo)體的調(diào)制摻雜可改善金屬界面的接觸。

64.New Approach to Low-Power-Consumption, High-Performance Photodetectors Enabled by Nanowire Source-Gated Transistors.
由納米線源門晶體管實(shí)現(xiàn)低功耗、高性能光電探測(cè)器的新方法。

65.Metal Organic Framework-Based Bio-Barcode CRISPR/Cas12a Assay for Ultrasensitive Detection of MicroRNAs.
基于金屬有機(jī)框架的生物條形碼 CRISPR/Cas12a 檢測(cè),用于超靈敏檢測(cè) MicroRNA。

66.Strontium-Incorporated Carbon Nitride Nanosheets Modulate Intracellular Tension for Reinforced Bone Regeneration.
摻鍶碳氮化物納米片可調(diào)節(jié)細(xì)胞內(nèi)張力以增強(qiáng)骨再生。

67.NIR-II Dyad-Doped Ratiometric Nanosensor with Enhanced Spectral Fidelity in Biological Media for In Vivo Biosensing.
NIR-II 二元摻雜比率納米傳感器,在生物介質(zhì)中具有增強(qiáng)的光譜保真度,用于體內(nèi)生物傳感。

68.High-Angular Momentum Excitations in Collinear Antiferromagnet FePS3.
共線反鐵磁體 FePS3 中的高角動(dòng)量激發(fā)。

69.Cavity-Enhanced 2D Material Quantum Emitters Deterministically Integrated with Silicon Nitride Microresonators.
腔增強(qiáng)型二維材料量子發(fā)射器與氮化硅微諧振器確定性集成。

70.Bacterial DNA Recognition by SERS Active Plasma-Coupled Nanogold.
通過 SERS 活性等離子體耦合納米金識(shí)別細(xì)菌 DNA。

71.Anisotropic Hyperfine Interaction of Surface-Adsorbed Single Atoms.
表面吸附單原子的各向異性超精細(xì)相互作用。

72.Ultrafast Demagnetization Control in Magnetophotonic Surface Crystals.
磁光子表面晶體的超快退磁控制。

73.Correction to Dually Gated Polymersomes for Gene Delivery.
校正用于基因傳遞的雙門控聚合物體。

74.Dicke-Cooperativity-Assisted Ultrastrong Coupling Enhancement in Terahertz Metasurfaces.
太赫茲超表面中迪克協(xié)同輔助的超強(qiáng)耦合增強(qiáng)。

75.Atomic Cross-Talk at the Interface: Enhanced Lubricity and Wear and Corrosion Resistance in Sub 2 nm Hybrid Overcoats via Strengthened Interface Chemistry.
界面處的原子串?dāng)_:通過強(qiáng)化界面化學(xué)增強(qiáng)亞 2 nm 混合涂層的潤(rùn)滑性、耐磨性和耐腐蝕性。

76.Light-Induced Condensation of Biofunctional Molecules around Targeted Living Cells to Accelerate Cytosolic Delivery.
光誘導(dǎo)目標(biāo)活細(xì)胞周圍生物功能分子的縮合,以加速胞質(zhì)遞送。

77.Delicate Ferromagnetism in MnBi6Te10.
MnBi6Te10 具有微妙的鐵磁性。

78.Micropattern of Silver/Polyaniline Core–Shell Nanocomposite Achieved by Maskless Optical Projection Lithography.
通過無掩模光學(xué)投影光刻實(shí)現(xiàn)銀/聚苯胺核殼納米復(fù)合材料的微圖案。

79.Nonlinear Stiffness and Nonlinear Damping in Atomically Thin MoS2 Nanomechanical Resonators.
原子薄 MoS2 納米機(jī)械諧振器中的非線性剛度和非線性阻尼。

80.Layer-Number-Dependent Magnetism and Anomalous Hall Effect in van der Waals Ferromagnet Fe5GeTe2.
范德華鐵磁體 Fe5GeTe2 中的層數(shù)相關(guān)磁性和反?;魻栃?yīng)。

81.The Crucial Role of Solvation Forces in the Steric Stabilization of Nanoplatelets.
溶劑化力在納米血小板空間穩(wěn)定性中的關(guān)鍵作用。

82.A Green’s Function Approach for Determining Surface Induced Broadening and Shifting of Molecular Energy Levels.
用于確定表面誘導(dǎo)的分子能級(jí)展寬和移動(dòng)的格林函數(shù)方法。

83.Quantum Electrodynamic Behavior of Chlorophyll in a Plasmonic Nanocavity.
等離激元納米腔中葉綠素的量子電動(dòng)力學(xué)行為。

84.Mechanical Detection of the De Haas–van Alphen Effect in Graphene.
石墨烯中德哈斯-范阿爾芬效應(yīng)的機(jī)械檢測(cè)。

85.Using Metal–Organic Frameworks to Confine Liquid Samples for Nanoscale NV-NMR.
使用金屬有機(jī)框架限制納米級(jí) NV-NMR 的液體樣品。

86.Large-Scale Silver Sulfide Nanomesh Membranes with Ultrahigh Flexibility.
具有超高靈活性的大尺寸硫化銀納米網(wǎng)膜。

87.Strain Tunability of Perpendicular Magnetic Anisotropy in van der Waals Ferromagnets VI3.
范德華鐵磁體中垂直磁各向異性的應(yīng)變可調(diào)性 VI3。

88.Tunable Magnetic Properties in Sr2FeReO6 Double-Perovskite.
Sr2FeReO6 雙鈣鈦礦的可調(diào)諧磁性。

89.Molecular-Resolution Imaging of Interfacial Solvation of Electrolytes for Lithium-Ion Batteries by Frequency Modulation Atomic Force Microscopy.
通過調(diào)頻原子力顯微鏡對(duì)鋰離子電池電解質(zhì)界面溶劑化進(jìn)行分子分辨率成像。

90.Nonlinear Optical Signal Generation Mediated by a Plasmonic Azimuthally Chirped Grating.
由等離子體方位啁啾光柵介導(dǎo)的非線性光信號(hào)生成。

============================================
由于專欄圖片數(shù)量限制,關(guān)注我的個(gè)人公眾號(hào)“遠(yuǎn)夢(mèng)研”查看更多。