最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

日拱一卒:Day2

2023-03-08 20:06 作者:小謝想學(xué)好數(shù)分  | 我要投稿

數(shù)學(xué)分析055:Lebesgue-Vitali定理

筆記:

Lebesgue-Vitali定理

函數(shù)在有限閉區(qū)間上Riemann可積等價于函數(shù)在該區(qū)間上的不連續(xù)點所構(gòu)成的一個集合是零測集。

必要性證明

想法:

在這里選擇使用振幅來刻畫,利用一個任意的δ來劃分,只討論大于δ的不連續(xù)點,看似毫無頭緒,但是轉(zhuǎn)念一想,對于該點處的振幅,ω<δ的部分,實際上就是表示該點的振幅為0,即該點不間斷。

后面的證明是對間斷點做了分開的處理,在分劃上的點本身就是零測的,比較簡單。而對于在分劃內(nèi)的間斷點,利用振幅的下界,結(jié)合黎曼可積推導(dǎo)出想要的不等式。

充分性證明

想法:

利用條件的“不連續(xù)點構(gòu)成零測集”這一條件,同樣是分割的思想,把存在不連續(xù)點的區(qū)間和連續(xù)的區(qū)間分開計算。



日拱一卒:Day2的評論 (共 條)

分享到微博請遵守國家法律
东港市| 蒙自县| 巩义市| 平原县| 云阳县| 沅江市| 杂多县| 博客| 崇文区| 灌云县| 孝感市| 黔西县| 石棉县| 垫江县| 江安县| 鄯善县| 和龙市| 五常市| 宜良县| 正宁县| 台山市| 葫芦岛市| 德阳市| 和静县| 绥芬河市| 筠连县| 白城市| 嘉鱼县| 如皋市| 新密市| 道孚县| 韩城市| 饶河县| 揭西县| 新津县| 五莲县| 札达县| 盱眙县| 长岭县| 彩票| 廊坊市|