日拱一卒:Day2
2023-03-08 20:06 作者:小謝想學(xué)好數(shù)分 | 我要投稿
數(shù)學(xué)分析055:Lebesgue-Vitali定理
筆記:
Lebesgue-Vitali定理
函數(shù)在有限閉區(qū)間上Riemann可積等價于函數(shù)在該區(qū)間上的不連續(xù)點所構(gòu)成的一個集合是零測集。
必要性證明
想法:
在這里選擇使用振幅來刻畫,利用一個任意的δ來劃分,只討論大于δ的不連續(xù)點,看似毫無頭緒,但是轉(zhuǎn)念一想,對于該點處的振幅,ω<δ的部分,實際上就是表示該點的振幅為0,即該點不間斷。
后面的證明是對間斷點做了分開的處理,在分劃上的點本身就是零測的,比較簡單。而對于在分劃內(nèi)的間斷點,利用振幅的下界,結(jié)合黎曼可積推導(dǎo)出想要的不等式。
充分性證明
想法:
利用條件的“不連續(xù)點構(gòu)成零測集”這一條件,同樣是分割的思想,把存在不連續(xù)點的區(qū)間和連續(xù)的區(qū)間分開計算。
標(biāo)簽: