最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

貝塞爾&勒讓德||數(shù)理方程

2021-06-01 15:11 作者:湮滅的末影狐  | 我要投稿

//本節(jié)詳細(xì)介紹球坐標(biāo)、柱坐標(biāo)下的分離變量法,并引入貝塞爾方程和勒讓德方程。

//前段時(shí)間事情實(shí)在太多,鴿了很久不好意思...我當(dāng)然是沒有忘記這里筆記沒有更完的

//這個(gè)系列的定位僅僅是學(xué)習(xí)筆記,所以可能不會(huì)完整覆蓋所有相關(guān)細(xì)節(jié),而是注重對(duì)整體思路的把握。

I 球坐標(biāo)的拉普拉斯方程

在球坐標(biāo)系,拉普拉斯方程%5Cnabla%5E2%20u%20%3D0應(yīng)寫為如下形式:

%5Cfrac%7B1%7D%7Br%5E2%7D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20r%7D(r%5E2%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20r%7D)%20%2B%20%5Cfrac%7B1%7D%7Br%5E2%5Csin%5Ctheta%7D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20%5Ctheta%7D(%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20%5Ctheta%7D%20%5Csin%20%5Ctheta)%0A%2B%5Cfrac%7B1%7D%7Br%5E2%5Csin%5E2%5Ctheta%7D%5Cfrac%7B%5Cpartial%5E2%20u%20%7D%7B%5Cpartial%20%5Cphi%5E2%7D%3D0

嘗試對(duì)其進(jìn)行分離變量:

u(r%2C%5Ctheta%2C%5Cphi)%3DR(r)Y(%5Ctheta%2C%5Cphi)

代入整理得到

%5Cfrac%7B1%7D%7BR%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7D%20r%7D%5Cleft(r%5E%7B2%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20R%7D%7B%5Cmathrm%7B~d%7D%20r%7D%5Cright)%3D-%5Cfrac%7B1%7D%7BY%5Csin%20%5Ctheta%7D%20%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20%5Ctheta%7D%5Cleft(%20%5Cfrac%7B%5Cpartial%20%7BY%7D%7D%7B%5Cpartial%20%5Ctheta%7D%5Csin%20%5Ctheta%5Cright)-%20%5Cfrac%7B1%7D%7BY%5Csin%20%5E%7B2%7D%20%5Ctheta%7D%20%5Cfrac%7B%5Cpartial%5E%7B2%7D%20%7BY%7D%7D%7B%5Cpartial%20%5Cphi%5E%7B2%7D%7D

兩邊自變量不同但恒等,說明它們等于同一個(gè)常數(shù)。不妨設(shè)常數(shù)為l(l%2B1).

%5CRightarrow%20r%5E2%5Cfrac%7B%5Cmathrm%7Bd%7D%5E%7B2%7D%20R%7D%7B%5Cmathrm%7B~d%7D%20r%5E%7B2%7D%7D%2B2%20r%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20R%7D%7B%5Cmathrm%7B~d%7D%20r%7D-l(l%2B1)%20R%3D0

這是歐拉方程,只需作變量代換r%3De%5Et就不難解出其通解:

R(r)%3DCr%5El%2BDr%5E%7B-(l%2B1)%7D

對(duì)于Y(%5Ctheta%2C%5Cphi)滿足的方程,即球函數(shù)方程:

%5Cfrac%7B1%7D%7B%5Csin%20%5Ctheta%7D%20%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20%5Ctheta%7D%5Cleft(%20%5Cfrac%7B%5Cpartial%20%7BY%7D%7D%7B%5Cpartial%20%5Ctheta%7D%5Csin%20%5Ctheta%5Cright)%2B%5Cfrac%7B1%7D%7B%5Csin%20%5E%7B2%7D%20%5Ctheta%7D%20%5Cfrac%7B%5Cpartial%5E%7B2%7D%20%7BY%7D%7D%7B%5Cpartial%20%5Cphi%5E%7B2%7D%7D%2Bl(l%2B1)Y%3D0

再次分離變量:

Y(%5Ctheta%2C%5Cphi)%3D%5CTheta(%5Ctheta)%5CPhi(%5Cphi)

整理得到

%5Cfrac%7B%5Csin%20%5Ctheta%7D%7B%5CTheta%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7D%20%5Ctheta%7D%5Cleft(%5Csin%20%5Ctheta%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20%5CTheta%7D%7B%5Cmathrm%7Bd%7D%20%5Ctheta%7D%5Cright)%2Bl(l%2B1)%20%5Csin%20%5E%7B2%7D%20%5Ctheta%3D-%5Cfrac%7B1%7D%7B%5CPhi%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5E%7B2%7D%7B%5CPhi%7D%7D%7B%5Cmathrm%7Bd%7D%20%5Cvarphi%5E%7B2%7D%7D%3Dm%5E2

從而得到

%5CPhi''%2Bm%5E2%5CPhi%3D0%20%5CRightarrow%20%5CPhi(%5Cphi%20)%3DA%5Ccos%20m%5Cphi%20%2BB%5Csin%20m%5Cphi%20

%7B%5Csin%20%5Ctheta%7D%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7D%20%5Ctheta%7D%5Cleft(%5Csin%20%5Ctheta%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20%5CTheta%7D%7B%5Cmathrm%7Bd%7D%20%5Ctheta%7D%5Cright)%2B%5Bl(l%2B1)%20%5Csin%20%5E%7B2%7D%20%5Ctheta-m%5E2%5D%5CTheta%3D0

作變量代換x%3D%5Ccos%20%5Ctheta,得到l階連帶勒讓德方程:

(1-x%5E2)%5Cfrac%7B%5Cmathrm%7Bd%7D%5E2%20%5CTheta%7D%7B%5Cmathrm%7Bd%7D%20x%5E2%7D-2x%5Cfrac%7B%5Cmathrm%7Bd%7D%5CTheta%7D%7B%5Cmathrm%7Bd%7Dx%7D%2B%5Bl(l%2B1)-%5Cfrac%7Bm%5E2%7D%7B1-x%5E2%7D%5D%5CTheta%3D0

如取m%3D0,則得到l階勒讓德方程

(1-x%5E2)%5Cfrac%7B%5Cmathrm%7Bd%7D%5E2%20%5CTheta%7D%7B%5Cmathrm%7Bd%7D%20x%5E2%7D-2x%5Cfrac%7B%5Cmathrm%7Bd%7D%5CTheta%7D%7B%5Cmathrm%7Bd%7Dx%7D%2Bl(l%2B1)%5CTheta%3D0

(事實(shí)上,前面討論中的l%2Cm是薛定諤方程解中的角量子數(shù)和磁量子數(shù)。)

II 柱坐標(biāo)的拉普拉斯方程

在柱坐標(biāo)系下,拉普拉斯方程為

%5Cfrac%7B1%7D%7B%5Crho%7D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%5Crho%7D(%5Crho%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%5Crho%7D)%2B%20%5Cfrac%7B1%7D%7B%5Crho%5E2%7D%5Cfrac%7B%5Cpartial%5E2u%7D%7B%5Cpartial%5Cphi%5E2%7D%2B%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20z%5E2%7D%3D0

仍然分離變量:

u(%5Crho%2C%20%5Cphi%2C%20z)%3D%20R(%5Crho)%5CPhi(%5Cphi)Z(z)

代入方程并化簡得到

%5Cfrac%7B%5Crho%5E%7B2%7D%7D%7BR%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5E%7B2%7D%20R%7D%7B%5Cmathrm%7B~d%7D%20%5Crho%5E%7B2%7D%7D%2B%5Cfrac%7B%5Crho%7D%7BR%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20R%7D%7B%5Cmathrm%7B~d%7D%20%5Crho%7D%2B%5Crho%5E%7B2%7D%20%5Cfrac%7BZ%5E%7B%5Cprime%20%5Cprime%7D%7D%7BZ%7D%3D-%5Cfrac%7B%5CPhi%5E%7B%5Cprime%20%5Cprime%7D%7D%7B%5CPhi%7D%3Dm%5E2

類似操作,得到:

%5CPhi(%5Cphi)%3DA%5Ccos%20m%5Cphi%20%2B%20B%20%5Csin%20m%5Cphi

再令Z''-%5Cmu%20Z%20%3D0?并按以下分類討論:

①?%5Cmu%3D0

則可以解得

Z(z)%3DC%2BDz

R(%5Crho)%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%0A%20%20%20%20E%2BF%5Cln%20%5Crho%2C%5C%3Bm%3D0%5C%5C%0A%20%20%20%20E%5Crho%5Em%20%2B%20F%5Crho%5E%7B-m%7D%2C%5C%3B%20m%3D1%2C2%2C3%2C...%0A%5Cend%7Barray%7D%5Cright.

②?%5Cmu%20%3E0

則可以進(jìn)行變換x%3D%5Csqrt%20%5Cmu%20%5Crho%20,并推出m階貝塞爾方程:

x%5E2%5Cfrac%7B%5Cmathrm%7Bd%7D%5E2R%7D%7B%5Cmathrm%7Bd%7Dx%5E2%7D%2Bx%5Cfrac%7B%5Cmathrm%7Bd%7DR%7D%7B%5Cmathrm%7Bd%7Dx%7D%2B(x%5E2-m%5E2)R%3D0

③?%5Cmu%20%3C0

則改為x%3D%5Csqrt%7B-%5Cmu%7D%5Crho,得到虛宗量貝塞爾方程:

x%5E2%5Cfrac%7B%5Cmathrm%7Bd%7D%5E2R%7D%7B%5Cmathrm%7Bd%7Dx%5E2%7D%2Bx%5Cfrac%7B%5Cmathrm%7Bd%7DR%7D%7B%5Cmathrm%7Bd%7Dx%7D-(x%5E2%2Bm%5E2)R%3D0

至此我們從球坐標(biāo)和柱坐標(biāo)引出了兩個(gè)重要常微分方程,勒讓德方程和貝塞爾方程。接下來我們的討論表明,波動(dòng)、輸運(yùn)、穩(wěn)定場三類PDE的求解都是可以歸結(jié)到勒讓德、貝塞爾方程的。

III 波動(dòng)方程

對(duì)于波動(dòng)方程u_%7Btt%7D-a%5E2%20%5CDelta%20u%3D0,我們首先嘗試分離出時(shí)間:

u%3DT(t)v(%5Cvec%20r)

%5CRightarrow%20%5Cfrac%7BT''%7D%7Ba%5E2T%7D%3D%5Cfrac%7B%5CDelta%20v%7D%7Bv%7D%3D-k%5E2

從而解出

T%3DC%5Ccos%7Bkat%7D%2BD%5Csin%7Bkat%7D%2C%5C%3Bk%5Cneq%200%5C%3B(%7B%5Crm%20or%7D%5C%3BC%2BDt%20%5C%3B%7B%5Crm%20when%20%5C%3Bk%3D0%7D)\

并得到亥姆霍茲方程:

%5CDelta%20v%20%2Bk%5E2%20v%20%3D0

IV 輸運(yùn)方程

對(duì)于輸運(yùn)方程u_t-a%5E2%5CDelta%20u%3D0, 類似分析我們可以得到

u%3Dv(%5Cvec%20r)T(t)

T%3DCe%5E%7B-k%5E2a%5E2%20t%7D

%5CDelta%20v%20%2Bk%5E2%20v%20%3D0

V 亥姆霍茲方程

經(jīng)過前面討論,波動(dòng)、輸運(yùn)方程將時(shí)間分離后均歸結(jié)為亥姆霍茲方程。

接下來嘗試對(duì)亥姆霍茲方程進(jìn)行分離變量:

在球坐標(biāo),亥姆霍茲方程的形式為

%5Cfrac%7B1%7D%7Br%5E%7B2%7D%7D%20%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20r%7D%5Cleft(r%5E%7B2%7D%20%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20r%7D%5Cright)%2B%5Cfrac%7B1%7D%7Br%5E%7B2%7D%20%5Csin%20%5Ctheta%7D%20%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20%5Ctheta%7D%5Cleft(%5Csin%20%5Ctheta%20%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20%5Ctheta%7D%5Cright)%2B%5Cfrac%7B1%7D%7Br%5E%7B2%7D%20%5Csin%20%5E%7B2%7D%20%5Ctheta%7D%20%5Cfrac%7B%5Cpartial%5E%7B2%7D%20v%7D%7B%5Cpartial%20%5Cvarphi%5E%7B2%7D%7D%2Bk%5E%7B2%7D%20v%3D0

設(shè)v(r%2C%5Ctheta%2C%5Cphi)%3DR(r)Y(%5Ctheta%2C%20%5Cphi), 則經(jīng)過計(jì)算可知Y(%5Ctheta%2C%5Cphi)仍然滿足球函數(shù)方程:

%5Cfrac%7B1%7D%7B%5Csin%20%5Ctheta%7D%20%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20%5Ctheta%7D%5Cleft(%5Csin%20%5Ctheta%20%5Cfrac%7B%5Cpartial%20%5Cmathrm%7BY%7D%7D%7B%5Cpartial%20%5Ctheta%7D%5Cright)%2B%5Cfrac%7B1%7D%7B%5Csin%20%5E%7B2%7D%20%5Ctheta%7D%20%5Cfrac%7B%5Cpartial%5E%7B2%7D%20%5Cmathrm%7BY%7D%7D%7B%5Cpartial%20%5Cvarphi%5E%7B2%7D%7D%2Bl(l%2B1)%20%5Cmathrm%7BY%7D%3D0

而另一個(gè)方程是l階球貝塞爾方程

%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7D%20r%7D%5Cleft(r%5E%7B2%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20R%7D%7B%5Cmathrm%7B~d%7D%20r%7D%5Cright)%2B%5Cleft%5Bk%5E%7B2%7D%20r%5E%7B2%7D-l(l%2B1)%5Cright%5D%20R%3D0%0A

如作變量代換x%3Dkr%2C%20%5C%3B%20y(x)%3D%5Csqrt%7B%5Cfrac%7B2x%7D%7B%5Cpi%7D%7D%20R(r)則可以得到l%2B%5Cfrac12階貝塞爾方程:

x%5E%7B2%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5E%7B2%7D%20y%7D%7B%5Cmathrm%7B~d%7D%20x%5E%7B2%7D%7D%2Bx%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20y%7D%7B%5Cmathrm%7B~d%7D%20x%7D%2B%5Cleft%5Bx%5E%7B2%7D-%5Cleft(l%2B%5Cfrac%7B1%7D%7B2%7D%5Cright)%5E%7B2%7D%5Cright%5D%20y%3D0

而在柱坐標(biāo),類似地分離變量,得到

v%3DR(%5Crho)%5CPhi(%5Cphi)Z(z)

%5Cbegin%7Barray%7D%7Bl%7D%0A%5CPhi%5E%7B%5Cprime%20%5Cprime%7D%2B%5Clambda%20%5CPhi%3D0%20%5C%5C%0AZ%5E%7B%5Cprime%20%5Cprime%7D%2B%5Cnu%5E%7B2%7D%20Z%3D0%20%5C%5C%0A%5Cfrac%7B%5Cmathrm%7Bd%7D%5E%7B2%7D%20R%7D%7B%5Cmathrm%7B~d%7D%20%5Crho%5E%7B2%7D%7D%2B%5Cfrac%7B1%7D%7B%5Crho%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20R%7D%7B%5Cmathrm%7B~d%7D%20%5Crho%7D%2B%5Cleft(k%5E%7B2%7D-%5Cnu%5E%7B2%7D-%5Cfrac%7B%5Clambda%7D%7B%5Crho%5E%7B2%7D%7D%5Cright)%20R%3D0%0A%5Cend%7Barray%7D

結(jié)合自然邊界條件得%5CPhi%20%3D%20A%5Ccos%20m%5Cphi%20%2B%20B%20%5Csin%20m%20%5Cphi,而對(duì)R仿照前面的討論仍可以得到m階貝塞爾方程。

總之,通過以上討論,我們從幾類PDE的求解中歸類出了勒讓德方程與貝塞爾方程兩類重要的ODE,接下來將基于此研究球、柱坐標(biāo)中的PDE求解。

貝塞爾&勒讓德||數(shù)理方程的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
攀枝花市| 孝感市| 武宣县| 阳曲县| 浮山县| 赣州市| 乌拉特前旗| 巨鹿县| 达日县| 新营市| 宣威市| 邹平县| 阜南县| 钟山县| 乐清市| 贵港市| 玉山县| 临桂县| 利辛县| 宜君县| 新密市| 霞浦县| 临颍县| 台南县| 清新县| 五原县| 巴东县| 永安市| 兰考县| 罗平县| 大庆市| 舟山市| 慈溪市| 佛坪县| 鄂托克前旗| 汉寿县| 安康市| 罗江县| 汉中市| 湟中县| 出国|