最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

量子場論(七):復標量場的正則量子化、U(1)整體對稱性

2022-11-19 02:09 作者:我的世界-華汁  | 我要投稿

復標量場不滿足自共軛條件:

%5Cphi(x)%5Cne%5Cphi%5E%5Cdagger(x).%5Ctag%7B7.1%7D

自由復標量場的拉格朗日量為:

%5Cmathcal%20L%3D%5Cpartial%5E%5Cmu%5Cphi%5E%5Cdagger%5Cpartial_%5Cmu%5Cphi-m%5E2%5Cphi%5E%5Cdagger%5Cphi.%5Ctag%7B7.2%7D

其中m是復標量場的質(zhì)量。%5Cphi(x)%5Cphi%5E%5Cdagger(x)線性獨立,是兩個獨立的變量??紤]到:

%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial%5Cphi%7D%3D-m%5E2%5Cphi%5E%5Cdagger%2C%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_%5Cmu%5Cphi)%7D%3D%5Cpartial%5E%5Cmu%5Cphi%5E%5Cdagger%2C%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial%5Cphi%5E%5Cdagger%7D%3D-m%5E2%5Cphi%2C%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_%5Cmu%5Cphi%5E%5Cdagger)%7D%3D%5Cpartial%5E%5Cmu%5Cphi.%5Ctag%7B7.3%7D

代入拉格朗日方程就可以得到場算符與它的厄米共軛都滿足克萊因-高登方程:

(%5Cpartial_%5Cmu%5Cpartial%5E%5Cmu%2Bm%5E2)%5Cphi%3D0%2C(%5Cpartial_%5Cmu%5Cpartial%5E%5Cmu%2Bm%5E2)%5Cphi%5E%5Cdagger%3D0.%5Ctag%7B7.4%7D

可以將復標量場分解成兩個實標量場的組合:

%5Cphi%3D%5Cfrac%7B%5Csqrt2%7D2(%5Cphi_1%2Bi%5Cphi_2)%2C%5Cphi%5E%5Cdagger%3D%5Cfrac%7B%5Csqrt2%7D2(%5Cphi_1-i%5Cphi_2).%5Ctag%7B7.5%7D

經(jīng)過簡單的運算后,拉格朗日量化為:

%5Cmathcal%20L%3D%5Cfrac12%5Cpartial%5E%5Cmu%5Cphi_1%5Cpartial_%5Cmu%5Cphi_1-%5Cfrac12m%5E2%5Cphi_1%5E2%2B%5Cfrac12%5Cpartial%5E%5Cmu%5Cphi_2%5Cpartial_%5Cmu%5Cphi_2-%5Cfrac12m%5E2%5Cphi_2%5E2.%5Ctag%7B7.6%7D

可以知道,復標量場的拉格朗日量等于兩個質(zhì)量相同的實標量場的拉格朗日量之和。

相應地,共軛動量密度為:%5Cpi(x)%3D%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_0%5Cphi)%7D%3D%5Cpartial_0%5Cphi%5E%5Cdagger%3D%5Cdot%7B%5Cphi%5E%5Cdagger%7D.%5Ctag%7B7.7%7D

%5Cpi%5E%5Cdagger(x)%3D%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_0%5Cphi%5E%5Cdagger)%7D%3D%5Cpartial_0%5Cphi%3D%5Cdot%7B%5Cphi%7D.%5Ctag%7B7.8%7D

哈密頓量密度為:

%5Cmathcal%20H%3D%5Cpi%5E%5Cdagger%5Cpi%2B%5Cnabla%5Cphi%5E%5Cdagger%5Ccdot%5Cnabla%5Cphi%2Bm%5E2%5Cphi%5E%5Cdagger%5Cphi.%5Ctag%7B7.9%7D

由于復標量場滿足克萊因-高登方程,自然也可以平面波展開:

%5Cphi(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20ke%5E%7B-i(E_%5Cmathbf%20kt-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2B%5Ctilde%20a_%5Cmathbf%20ke%5E%7Bi(E_%5Cmathbf%20kt%2B%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20ke%5E%7B-i(E_%5Cmathbf%20kt-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2B%5Ctilde%20a_%5Cmathbf%7B-k%7De%5E%7Bi(E_%5Cmathbf%20kt-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k.%5Ctag%7B7.10%7D

由于不滿足自共軛條件,所以a_%5Cmathbf%20k%5Ctilde%20a_%7B-%5Cmathbf%20k%7D之間沒有什么關系,引入記號:

b_%5Cmathbf%20k%5E%5Cdagger%3D%5Ctilde%20a_%7B-%5Cmathbf%20k%7D.%5Ctag%7B7.11%7D

故平面波展開式變?yōu)椋?/p>

%5Cphi(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20ke%5E%7B-i(E_%5Cmathbf%20kt-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2Bb_%5Cmathbf%20k%5E%5Cdagger%20e%5E%7Bi(E_%5Cmathbf%20kt-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k.%5Ctag%7B7.12%7D

替換成動量記號,則:

%5Cphi(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20p%7D%7D(a_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D%2Bb_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D)%5Cmathrm%20d%5E3p.%5Ctag%7B7.13%7D

取厄米共軛,得到:

%5Cphi%5E%5Cdagger(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20p%7D%7D(b_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D)%5Cmathrm%20d%5E3p.%5Ctag%7B7.14%7D

a_%5Cmathbf%20pb_%5Cmathbf%20p是兩個獨立的湮滅算符,a_%5Cmathbf%20p%5E%5Cdaggerb_%5Cmathbf%20p%5E%5Cdagger是兩個獨立的產(chǎn)生算符。

共軛動量密度為:

%5Cpi(%5Cmathbf%20x%2Ct)%3D%7B%5Cdot%5Cphi%7D%5E%5Cdagger%3D%5Cint%5Cfrac%7B-i%5Csqrt%7BE_%5Cmathbf%20p%7D%7D%7B(2%5Cpi)%5E3%5Csqrt2%7D(b_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D-a_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D).%5Ctag%7B7.15%7D

%5Cpi%5E%5Cdagger(%5Cmathbf%20x%2Ct)%3D%7B%5Cdot%5Cphi%7D%3D%5Cint%5Cfrac%7B-i%5Csqrt%7BE_%5Cmathbf%20p%7D%7D%7B(2%5Cpi)%5E3%5Csqrt2%7D(a_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D-b_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D).%5Ctag%7B7.16%7D

等時對易關系為:

%5Cbegin%7Balign%7D%5B%5Cphi(%5Cmathbf%20x%2Ct)%2C%5Cpi(%5Cmathbf%20y%2Ct)%5D%26%3Di%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20x-%5Cmathbf%20y)%2C%5B%5Cphi(%5Cmathbf%20x%2Ct)%2C%5Cphi(%5Cmathbf%20y%2Ct)%5D%3D%5B%5Cpi(%5Cmathbf%20x%2Ct)%2C%5Cpi(%5Cmathbf%20y%2Ct)%5D%3D0%2C%5C%5C%20%5B%5Cphi%5E%5Cdagger(%5Cmathbf%20x%2Ct)%2C%5Cpi%5E%5Cdagger(%5Cmathbf%20y%2Ct)%5D%26%3Di%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20x-%5Cmathbf%20y)%2C%5B%5Cphi%5E%5Cdagger(%5Cmathbf%20x%2Ct)%2C%5Cphi%5E%5Cdagger(%5Cmathbf%20y%2Ct)%5D%3D%5B%5Cpi%5E%5Cdagger(%5Cmathbf%20x%2Ct)%2C%5Cpi%5E%5Cdagger(%5Cmathbf%20y%2Ct)%5D%3D0%2C%5C%5C%20%5B%5Cphi(%5Cmathbf%20x%2Ct)%2C%5Cpi%5E%5Cdagger(%5Cmathbf%20y%2Ct)%5D%26%3D%5B%5Cphi%5E%5Cdagger(%5Cmathbf%20x%2Ct)%2C%5Cpi(%5Cmathbf%20y%2Ct)%5D%3D%5B%5Cphi(%5Cmathbf%20x%2Ct)%2C%5Cphi%5E%5Cdagger(%5Cmathbf%20y%2Ct)%5D%3D%5B%5Cpi(%5Cmathbf%20x%2Ct)%2C%5Cpi%5E%5Cdagger(%5Cmathbf%20y%2Ct)%5D%3D0.%5Cend%7Balign%7D%5Ctag%7B7.17%7D

也可推出產(chǎn)生湮滅算符的對易關系為:

%5Cbegin%7Balign%7D%5Ba_%5Cmathbf%20p%2Ca_%5Cmathbf%20q%5E%5Cdagger%5D%26%3D(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%2C%5Ba_%5Cmathbf%20p%2Ca_%5Cmathbf%20q%5D%3D%5Ba%5E%5Cdagger_%5Cmathbf%20p%2Ca_%5Cmathbf%20q%5E%5Cdagger%5D%3D0%2C%5C%5C%20%5Bb_%5Cmathbf%20p%2Cb_%5Cmathbf%20q%5E%5Cdagger%5D%26%3D(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%2C%5Bb_%5Cmathbf%20p%2Cb_%5Cmathbf%20q%5D%3D%5Bb%5E%5Cdagger_%5Cmathbf%20p%2Cb_%5Cmathbf%20q%5E%5Cdagger%5D%3D0%2C%5C%5C%20%5Ba_%5Cmathbf%20p%2Cb_%5Cmathbf%20q%5E%5Cdagger%5D%26%3D%5Bb_%5Cmathbf%20p%2Ca_%5Cmathbf%20q%5E%5Cdagger%5D%3D%5Ba_%5Cmathbf%20p%2Cb_%5Cmathbf%20q%5D%3D%5Ba%5E%5Cdagger_%5Cmathbf%20p%2Cb_%5Cmathbf%20q%5E%5Cdagger%5D%3D0%2C%5Cend%7Balign%7D%5Ctag%7B7.18%7D

U(1)是幺正群,群元可以是全體模為1的復數(shù)。對復標量場%5Cphi(x)做U(1)整體變換:

%5Cphi%5E%5Cprime(x)%3De%5E%7Biq%5Ctheta%7D%5Cphi(x)%2C%7B%5Cphi%5E%5Cdagger%7D%5E%5Cprime(x)%3De%5E%7B-iq%5Ctheta%7D%5Cphi%5E%5Cdagger(x).%5Ctag%7B7.19%7D

那么拉格朗日量是不變的。這就是U(1)整體對稱性,其中q稱為U(1)荷。相應的U(1)守恒流為:

J%5E%5Cmu%3Dq%5Cphi%5E%5Cdagger%20i%5Coverleftrightarrow%7B%5Cpartial%5E%5Cmu%7D%5Cphi.%5Ctag%7B7.20%7D

它是一個厄米算符:

%7BJ%5E%5Cmu%7D%5E%5Cdagger%3DJ%5E%5Cmu.%5Ctag%7B7.21%7D

U(1)守恒荷為:

%5Cbegin%7Balign%7DQ%26%3Dq%5Cint%5Cphi%5E%5Cdagger%20i%5Coverleftrightarrow%7B%5Cpartial%5E0%7D%5Cphi%5Cmathrm%20d%5E3x%3Diq%5Cint(%5Cphi%5E%5Cdagger%5Cpi%5E%5Cdagger-%5Cpi%5Cphi)%5Cmathrm%20d%5E3x%5C%5C%26%3Diq%5Cint%5Cfrac1%7B(2%5Cpi)%5E6%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20k%7D%7D%5B(b_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D)(-iE_%5Cmathbf%20k)(a_%5Cmathbf%20ke%5E%7B-ik%5Ccdot%20x%7D-b_%5Cmathbf%20k%5E%5Cdagger%20e%5E%7Bik%5Ccdot%20x%7D)-(-iE_%5Cmathbf%20p)(b_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D-a_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D)(a_%5Cmathbf%20ke%5E%7B-ik%5Ccdot%20x%7D%2Bb_%5Cmathbf%20k%5E%5Cdagger%20e%5E%7Bik%5Ccdot%20x%7D)%5D%5Cmathrm%20d%5E3x%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3k%5C%5C%26%3Dq%5Cint%5Cfrac1%7B(2%5Cpi)%5E6%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20k%7D%7D%5C%7B(E_%5Cmathbf%20k%2BE_%5Cmathbf%20p)%5Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20qe%5E%7Bi(p-k)%5Ccdot%20x%7D-b_%5Cmathbf%20pb%5E%5Cdagger_%5Cmathbf%20ke%5E%7B-i(p-k)%5Ccdot%20x%7D%5D%2B(E_%5Cmathbf%20k-E_%5Cmathbf%20p)%5Bb_%5Cmathbf%20pa_%5Cmathbf%20ke%5E%7B-i(p%2Bk)%5Ccdot%20x%7D-a%5E%5Cdagger_%5Cmathbf%20pb%5E%5Cdagger_%5Cmathbf%20ke%5E%7Bi(p%2Bk)%5Ccdot%20x%7D%5D%5C%7D%5Cmathrm%20d%5E3x%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3k%5C%5C%26%3Dq%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20k%7D%7D%5C%7B(E_%5Cmathbf%20k%2BE_%5Cmathbf%20p)%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20k)%5Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20ke%5E%7Bi(E_%5Cmathbf%20p-E_%5Cmathbf%20k)t%7D-b_%5Cmathbf%20pb%5E%5Cdagger_%5Cmathbf%20ke%5E%7B-i(E_%5Cmathbf%20p-E_%5Cmathbf%20k)t%7D%5D%2B(E_%5Cmathbf%20k-E_%5Cmathbf%20p)%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p%2B%5Cmathbf%20k)%5Bb_%5Cmathbf%20pa_%5Cmathbf%20ke%5E%7B-i(E_%5Cmathbf%20p%2BE_%5Cmathbf%20k)t%7D-a%5E%5Cdagger_%5Cmathbf%20pb%5E%5Cdagger_%5Cmathbf%20ke%5E%7Bi(E_%5Cmathbf%20p%2BE_%5Cmathbf%20k)t%7D%5D%5C%7D%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3k%5C%5C%26%3Dq%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D(a%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p-b_%5Cmathbf%20pb%5E%5Cdagger_%5Cmathbf%20p)%5Cmathrm%20d%5E3p%5C%5C%26%3Dq%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D(a%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p-b%5E%5Cdagger_%5Cmathbf%20pb_%5Cmathbf%20p)%5Cmathrm%20d%5E3p-%5Cdelta%5E%7B(3)%7D(%5Cmathbf%200)%5Cint%20q%5Cmathrm%20d%5E3p.%5Cend%7Balign%7D%5Ctag%7B7.22%7D

第二項是零點荷??梢?,a_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger描述荷為q的粒子,稱為正粒子,b_%5Cmathbf%20pb_%5Cmathbf%20p%5E%5Cdagger描述荷為-q的粒子,稱為反粒子。復標量場描述一對正反標量玻色子。除負無窮大的零點荷,總荷是正粒子的荷與反粒子的荷之和。這里單粒子的荷對總荷的貢獻是相加性的,而且來源于一種內(nèi)稟對稱性,因此是一種內(nèi)部相加性量子數(shù)。反粒子的所有內(nèi)部相加性量子數(shù)都與正粒子相反。

實標量場的荷q%3D0%2C反粒子與正粒子相同,因此實標量場描述純中性標量玻色子。

經(jīng)過類似的推導,復標量場的哈密頓算符為:

%5Chat%20H%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DE_%5Cmathbf%20p(a%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%2Bb%5E%5Cdagger_%5Cmathbf%20pb_%5Cmathbf%20p)%5Cmathrm%20d%5E3p%2B%5Cdelta%5E%7B(3)%7D(%5Cmathbf%200)%5Cint%20E_%5Cmathbf%20p%5Cmathrm%20d%5E3p.%5Ctag%7B7.23%7D

總動量算符為:

%5Chat%7B%5Cmathbf%20p%7D%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D%5Cmathbf%20p(a%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%2Bb%5E%5Cdagger_%5Cmathbf%20pb_%5Cmathbf%20p)%5Cmathrm%20d%5E3p.%5Ctag%7B7.24%7D

量子場論(七):復標量場的正則量子化、U(1)整體對稱性的評論 (共 條)

分享到微博請遵守國家法律
大埔县| 双桥区| 锦屏县| 陈巴尔虎旗| 平罗县| 威宁| 健康| 凯里市| 天长市| 增城市| 莱西市| 博爱县| 新乡市| 五华县| 马尔康县| 六盘水市| 丹东市| 利辛县| 筠连县| 宝应县| 平远县| 张家川| 和林格尔县| 奉节县| 三门峡市| 昌黎县| 柳河县| 行唐县| 烟台市| 云霄县| 锦屏县| 宜春市| 东海县| 安乡县| 柘城县| 桦川县| 甘洛县| 光山县| 平塘县| 抚顺市| 神木县|