最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

復(fù)習(xí)筆記Day113:概率論知識(shí)總結(jié)(五)

2023-03-04 22:54 作者:間宮_卓司  | 我要投稿

雖然本來(lái)不打算看第七章的,但今天早上翻了一下課本,發(fā)現(xiàn)有的內(nèi)容我還是感興趣的,所以選著看一些

第七章 隨機(jī)序列的收斂

§7.5 依分布收斂

定義7.5.1?(1)設(shè)F_n%5Cmathbf%7BR%7D上的分布函數(shù)。稱(chēng)%5Cleft%5C%7B%20F_n%20%5Cright%5C%7D%20弱收斂,如果存在一個(gè)遞增右連續(xù)的函數(shù)F,使得對(duì)任何F的連續(xù)點(diǎn)x,有%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7DF_n%5Cleft(%20x%20%5Cright)%20%3DF%5Cleft(%20x%20%5Cright)%20,記為F_n%5Cxrightarrow%7Bw%7DF;

(2)如果%5Cxi%20_n的分布函數(shù)序列F_n弱收斂于%5Cxi的分布函數(shù)F,稱(chēng)%5Cxi%20_n%5CRightarrow%20%5Cxi%20,這里%5Cxi%20_n%5Cxi甚至不需要是一個(gè)概率空間上的

%5Cxi%20_n%5CRightarrow%20%5Cxi%20個(gè)人感覺(jué)是一個(gè)很弱的條件,隨機(jī)序列%5Cxi_n甚至可以不收斂,例如取%5Cxi服從標(biāo)準(zhǔn)正態(tài)分布,%5Cxi_n%3D(-1)%5En%5Cxi,那么%5Cxi_n%5Cxi分布函數(shù)相同

定理7.5.1 設(shè)%5Cleft%5C%7B%20%5Cxi%20_n%20%5Cright%5C%7D%20%2C%5Cxi%20是隨機(jī)變量,分別具有分布函數(shù)%5Cleft%5C%7B%20F_n%20%5Cright%5C%7D%20%2CF。如果%5Cxi%20_n%5Cxrightarrow%7Bp%7D%5Cxi%20,則對(duì)F的任意連續(xù)點(diǎn)x%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7DF_n%5Cleft(%20x%20%5Cright)%20%3DF%5Cleft(%20x%20%5Cright)%20

式中的%5Cxrightarrow%7Bp%7D指的是依概率收斂,即%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cleft%7C%20%5Cxi%20_n-%5Cxi%20%5Cright%7C%5Cge%20%5Cvarepsilon%20%5Cright)%20%2C%5Cforall%20%5Cvarepsilon%20%3E0

定理7.5.2?(%5Ctext%7BSkorohod%7D)設(shè)F_n%2Cn%5Cge1F%5Ctextbf%7BR%7D上的分布函數(shù),如果F_n%5Cxrightarrow%7Bw%7DF,則存在概率空間%5Cleft(%20%5COmega%20%2C%5Cmathscr%7BF%7D%20%2C%5Cmathbb%7BP%7D%20%5Cright)%20與其上的隨機(jī)變量%5Cleft%5C%7B%20%5Cxi%20_n%20%5Cright%5C%7D%20%2C%5Cxi%20使得

(1)%5Cxi_n點(diǎn)點(diǎn)收斂于%5Cxi

(2)F_nF分別是%5Cxi_n%5Cxi的分布函數(shù)

這個(gè)定理的證明思路上和定理 5.1.2的證明有點(diǎn)像,先證明了在連續(xù)點(diǎn)處,F_%7Bn%7D%5E%7B-1%7D點(diǎn)點(diǎn)收斂于F,然后再記%5Cxi%20_n%3DF_%7Bn%7D%5E%7B-1%7D%5Cleft(%20%5Ceta%20%5Cright)%201_%7B%5Cleft%5C%7B%20%5Ceta%20%5Cnotin%20D%20%5Cright%5C%7D%7D%2C%5Cxi%20%3DF%5E%7B-1%7D%5Cleft(%20%5Ceta%20%5Cright)%201_%7B%5Cleft%5C%7B%20%5Ceta%20%5Cnotin%20D%20%5Cright%5C%7D%7D,其中%5Ceta服從%5B0%2C1%5D上的均勻分布,1_%7B%5Cleft%5C%7B%20%5Ceta%20%5Cnotin%20D%20%5Cright%5C%7D%7D1_%7B%5Cleft%5C%7B%20x%5Cnotin%20D%20%5Cright%5C%7D%7D%5Cleft(%20%5Ceta%20%5Cright)%20的意思,DF的不連續(xù)點(diǎn)集。那么%5Cxi_n逐點(diǎn)收斂于%5Cxi,且因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=D" alt="D">至多可列,所以%5Cxi_n%2C%5Cxi的分布函數(shù)就是F_n%2CF

定理7.5.3?(%5Ctext%7BHelly-Bray%7D)設(shè)有分布函數(shù)F_n%2CF。則F_n%5Cxrightarrow%7Bw%7DF當(dāng)且僅當(dāng)對(duì)任何有界連續(xù)函數(shù)f%5Cint_%7B%7D%5E%7B%7D%7Bf%5Cmathrm%7Bd%7DF_n%7D%5Crightarrow%20%5Cint_%7B%7D%5E%7B%7D%7Bf%5Cmathrm%7Bd%7DF%7D

定理7.5.4?任何分布函數(shù)列%5Cleft%5C%7B%20F_n%20%5Cright%5C%7D%20有一個(gè)子列%5Cleft%5C%7B%20F_%7Bk_n%7D%20%5Cright%5C%7D%20弱收斂

這個(gè)定理的證明看的我有點(diǎn)懵,我按照自己的理解寫(xiě)一下好了

%5Cmathbf%7BR%7D中的一個(gè)稠密點(diǎn)集D%3D%5C%7Bx_n%3An%5Cge1%5C%7D,那么對(duì)于任何給定好的n,可以找到點(diǎn)列%5Cleft%5C%7B%20F_n%5Cleft(%20x_1%20%5Cright)%20%5Cright%5C%7D%20收斂子列%5Cleft%5C%7B%20F_%7Bk_%7Bn%7D%5E%7B%5Cleft(%201%20%5Cright)%7D%7D%5Cleft(%20x_1%20%5Cright)%20%5Cright%5C%7D%20,接下來(lái),對(duì)于點(diǎn)列%5Cleft%5C%7B%20F_%7Bk_%7Bn%7D%5E%7B%5Cleft(%201%20%5Cright)%7D%7D%5Cleft(%20x_2%20%5Cright)%20%5Cright%5C%7D%20,又可以找到收斂子列%5Cleft%5C%7B%20F_%7Bk_%7Bn%7D%5E%7B%5Cleft(%202%20%5Cright)%7D%7D%5Cleft(%20x_2%20%5Cright)%20%5Cright%5C%7D%20,一直這樣做下去,就可以找到函數(shù)序列%5C%7BF_n%5C%7D的一個(gè)收斂子列%5Cleft%5C%7B%20F_%7Bk_%7Bn%7D%5E%7B%5Cleft(%20n%20%5Cright)%7D%7D%5Cleft(%20x%20%5Cright)%20%5Cright%5C%7D%20,使得其滿足%5Cleft%5C%7B%20F_%7Bk_%7Bn%7D%5E%7B%5Cleft(%20n%20%5Cright)%7D%7D%5Cleft(%20x_i%20%5Cright)%20%2Ci%5Cle%20n%5Cright%5C%7D%20收斂,所以記k_%7Bn%7D%5E%7B%5Cleft(%20n%20%5Cright)%7D%3Dk_n的話,

就有%5Cleft%5C%7B%20%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7DF_%7Bk_n%7D%5Cleft(%20x_i%20%5Cright)%20%2Cx_i%5Cin%20D%20%5Cright%5C%7D%20收斂

接下來(lái)去證明%5Cleft%5C%7B%20F_%7Bk_n%7D%20%5Cright%5C%7D%20確實(shí)是弱收斂的,首先記%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7DF_%7Bk_n%7D%5Cleft(%20x_i%20%5Cright)%20%3Dy_i,那么如果弱收斂到的函數(shù)就被%5C%7By_i%5C%7D所唯一確定了,所以不妨定義

F%5Cleft(%20x%20%5Cright)%20%3D%5Cbegin%7Bcases%7D%0A%09y_i%2Cx_i%5Cin%20D%5C%5C%0A%09%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7Dy_%7Bx_0%5Cleft(%20n%20%5Cright)%7D%2Cx%3Dx_0%5Cnotin%20D%5C%5C%0A%5Cend%7Bcases%7D

其中%5C%7Bx_0(n)%5C%7D%5Csubset%20Dx_0%5Cleft(%20n%20%5Cright)%20%5Cdownarrow%20x_0,下面來(lái)證明確實(shí)有%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7DF_%7Bk_n%7D%5Cleft(%20x_0%20%5Cright)%20%3DF%5Cleft(%20x_0%20%5Cright)%20,其中x_0是連續(xù)點(diǎn),那么此時(shí)F_%7Bk_n%7D%5Cleft(%20x_%7Bi_m%7D%20%5Cright)%20%5Cle%20F_%7Bk_n%7D%5Cleft(%20x_0%20%5Cright)%20%5Cle%20F_%7Bk_n%7D%5Cleft(%20x_%7Bj_n%7D%20%5Cright)%20,其中x_%7Bn_j%7D%2Cx_%7Bn_i%7D%5Csubset%20D%2Ci%2Cj%3D1%2C2%2C%5Ccdots%20%2Cn,令n%5Crightarrow%20%5Cinfty%20,可得y_%7Bn_j%7D%5Cle%20%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7DF_%7Bk_n%7D%5Cleft(%20x_0%20%5Cright)%20%5Cle%20y_%7Bn_i%7D,這里嚴(yán)格來(lái)說(shuō)要取上下極限,但是我懶得打了。再取x_%7Bi_m%7D%5Cuparrow%20x_0%2Cx_%7Bj_n%7D%5Cdownarrow%20x_0,并分別令i%2Cj趨于無(wú)窮,這就證明了結(jié)論

(這個(gè)證明的后半段我竟然想了一個(gè)晚上,wssb)

圖片好像快100張了,接下來(lái)的兩章只能下一篇再發(fā)布了···

? ? ? ? ? ?



復(fù)習(xí)筆記Day113:概率論知識(shí)總結(jié)(五)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
江孜县| 册亨县| 罗平县| 榆社县| 连南| 新化县| 安丘市| 灵丘县| 肥东县| 普洱| 昌宁县| 闽清县| 青铜峡市| 景东| 辽中县| 台东市| 彭山县| 论坛| 阿荣旗| 黄山市| 定南县| 民乐县| 阳朔县| 常熟市| 尉氏县| 秭归县| 那曲县| 当涂县| 南雄市| 昆山市| 应城市| 永福县| 昆明市| 山阳县| 丁青县| 会东县| 喀喇| 上栗县| 阳曲县| 章丘市| 高淳县|