最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

寫幾個積分

2022-07-24 18:32 作者:子瞻Louis  | 我要投稿

好久沒更新了,今天就隨便寫幾道積分叭(可以拿去考考你的朋友,嘻嘻~)。

本文的題目都是up隨便找的,其中有的是經(jīng)過up的人性化改編。解決積分時會出現(xiàn)一些交換積分和求和次序的地方,這里并沒有詳細證明可以它們交換,若有讀者可以自行驗證(其實是我懶)

Q1:I_1%3D%5Cint_0%5E1%5Cfrac%7B%5Csqrt%5B3%5D%7Bx(1-x)%5E2%7D%7D%7B(1%2Bx)%5E3%7D%5Cmathrm%20dx

A:首先

I_1%3D%5Cint_0%5E1%5Cleft(%5Cfrac%20x%7B1%2Bx%7D%5Cright)%5E%7B1%2F3%7D%5Cleft(%5Cfrac%20%7B1-x%7D%7B1%2Bx%7D%5Cright)%5E%7B2%2F3%7D%5Ccdot%5Cfrac%7B%5Cmathrm%20dx%7D%7B(1%2Bx)%5E2%7D

作代換?t%3D2x%2F(1%2Bx) ,得

%5Cbegin%7Balign%7DI_1%26%3D%5Cfrac1%7B2%5Csqrt%5B3%5D2%7D%5Cint_0%5E%7B1%7Dt%5E%7B1%2F3%7D(1-t)%5E%7B2%2F3%7D%5Cmathrm%20dt%5C%5C%26%3D%5Cfrac1%7B2%5Csqrt%5B3%5D2%7DB%5Cleft(%5Cfrac43%2C%5Cfrac53%5Cright)%5C%5C%26%3D%5Cfrac%7B1%7D%7B4%5Csqrt%5B3%5D2%7D%5CGamma%5Cleft(%5Cfrac43%5Cright)%5CGamma%5Cleft(%5Cfrac53%5Cright)%5C%5C%26%3D%5Cfrac1%7B4%5Csqrt%5B3%5D2%7D%5Ccdot%5Cfrac13%5Ccdot%5Cfrac23%5Ccdot%5CGamma%5Cleft(%5Cfrac13%5Cright)%5CGamma%5Cleft(%5Cfrac23%5Cright)%5C%5C%26%3D%5Cfrac%7B%5Cpi%7D%7B9%5Csqrt%5B3%5D2%5Ccdot%5Csqrt3%7D%3D%5Cfrac%5Cpi%7B9%5Ccdot%7B108%7D%5E%7B1%2F6%7D%7D%5Cend%7Balign%7D

其中?B?是beta函數(shù),倒數(shù)第二等號是由于Gamma函數(shù)的遞推性質(zhì),最后一個等號則是余元公式。

%5Csquare

Q2:I_2%3D%5Cint_0%5E%5Cinfty%20%5Cfrac%7B%5Csqrt%20x%5Cln%5E2%20x%7D%7B1%2Bx%5E2%7D%5Cmathrm%20dx

A:

P(z)%3A%3D%5Cint_0%5E%5Cinfty%5Cfrac%7Bx%5E%7Bz%7D%7D%7B1%2Bx%5E2%7D%5Cmathrm%20dx

那么?I_2%3D%5Cfrac%7B%5Cpartial%5E2P%7D%7B%5Cpartial%20z%5E2%7D%5Cleft(%5Cfrac12%5Cright)

令?%5Ctheta%3D%5Carctan%20x ,則

%5Cbegin%7Balign%7DP(z)%26%3D%5Cint_0%5E%7B%5Cpi%2F2%7D%5Ctan%5E%7Bz%7D%5Ctheta%20%5Cmathrm%20d%5Ctheta%5C%5C%26%3D%5Cint_%7B0%7D%5E%7B%5Cpi%2F2%7D%5Csin%5Ez%5Ctheta%5Ccos%5E%7B-z%7D%5Ctheta%5Cmathrm%20dz%5C%5C%26%3D%5Cfrac12B%5Cleft(%5Cfrac%7B1%2Bz%7D2%2C%5Cfrac%7B1-z%7D2%5Cright)%5C%5C%26%3D%5Cfrac12%5Ccdot%5Cfrac%5Cpi%7B%5Ccos%5Cfrac%7B%5Cpi%20z%7D2%7D%5Cend%7Balign%7D

最后一個等號用了余元公式。從而

I_2%3D%5Cleft.%5Cfrac%5Cpi2%5Ccdot%5Cfrac%7B%5Cmathrm%20d%5E2%7D%7B%5Cmathrm%20dz%5E2%7D%5Cfrac%7B1%7D%7B%5Ccos%5Cfrac%7B%5Cpi%20z%7D2%7D%5Cright%7C_%7Bz%3D%5Cfrac12%7D%3D%5Cfrac%7B3%5Cpi%5E3%7D%7B2%5E%7B5%2F2%7D%7D

%5Csquare

Q3:I_3%3D%5Cint_0%5E1%5Cfrac%7B(1-x)%5Cln%5E2%20x%7D%7B1%2Bx%5E3%7D%5Cmathrm%20dx

A:直接暴力展開

%5Cbegin%7Balign%7DI_3%26%3D%5Cint_0%5E1(1-x)%5Cln%5E2x%5Csum_%7Bn%3D0%7D%5E%5Cinfty(-1)%5Enx%5E%7B3n%7D%5Cmathrm%20dx%5C%5C%26%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty(-1)%5En%5Cint_0%5E1x%5E%7B3n%7D(1-x)%5Cln%5E2x%5Cmathrm%20dx%5C%5C%26%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty(-1)%5En%5Cleft.%5Cfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial%20%5Calpha%5E2%7DB(%5Calpha%2C%5Cbeta)%5Cright%7C_%7B%5Calpha%3D3n%2B1%2C%5Cbeta%3D2%7D%5C%5C%26%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty(-1)%5En%20%5Cfrac%7B%5Cmathrm%20d%5E2%7D%7B%5Cmathrm%20d%5Calpha%5E2%7D%5Cleft.%5Cfrac%7B%5CGamma(%5Calpha)%7D%7B%5CGamma(%5Calpha%2B2)%7D%5Cright%7C_%7B%5Calpha%3D3n%2B1%7D%5C%5C%26%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty(-1)%5En%5Cleft%5B%5Cfrac2%7B(3n%2B1)%5E3%7D-%5Cfrac2%7B(3n%2B2)%5E3%7D%5Cright%5D%5Cend%7Balign%7D

令?%5Comega%3De%5E%7B2i%5Cpi%2F3%7D?,以及

Q(t)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B(-1)%5E%7Bn%7D%7D%7Bn%5E3%7Dt%5E%7Bn%7D

那么當?k%3D1%2C2?時

%5Cbegin%7Balign%7D%26%5Cfrac13(Q(t)%2B%5Comega%5E%7B-k%7DQ(%5Comega%20t)%2B%5Comega%5E%7B-2k%7DQ(%5Comega%5E2%20t))%5C%5C%26%3D%5Cfrac13%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B(-1)%5En%7D%7Bn%5E3%7D(1%2B%5Comega%5E%7Bn-k%7D%2B%5Comega%5E%7B2n-2k%7D)t%5En%5C%5C%26%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20%5Cfrac%7B(-1)%5E%7B3n%2Bk%7D%7D%7B(3n%2Bk)%5E3%7Dt%5E%7B3n%2Bk%7D%5Cend%7Balign%7D

取?t%3D1%2Ck%3D1%2C2?即可得

%5Cbegin%7Balign%7DI_2%26%3D-%5Cfrac23(Q(1)%2B%5Comega%5E%7B-1%7DQ(%5Comega)%2B%5Comega%5E%7B-2%7DQ(%5Comega%5E2))%5C%5C%26-%5Cfrac23(Q(1)%2B%5Comega%5E%7B-2%7DQ(%5Comega)%2B%5Comega%5E%7B-4%7DQ(%5Comega%5E2))%5C%5C%26%3D-%5Cfrac43Q(1)-%5Cfrac23Q(1)%2B%5Cfrac23(Q(1)%2BQ(%5Comega)%2BQ(%5Comega%5E2))%0A%5C%5C%26%3D-2Q(1)%2B%5Cfrac2%7B27%7DQ(1)%5C%5C%26%3D%5Cfrac32%5Czeta(3)-%5Cfrac1%7B18%7D%5Czeta(3)%3D%5Cfrac%7B13%7D9%5Czeta(3)%26%5Cend%7Balign%7D

其中?%5Czeta(3)?是Riemann?zeta函數(shù)取3的函數(shù)值,它也叫做Apéry常數(shù)。

有的積分算著算著就算成了級數(shù)

%5Csquare

Q4:I_4%3D%5Cint_0%5E1%20%5Cfrac%7Bx(1-x)%5E2%7D%7B%5Csqrt%7B2-x%7D%7D%5Cmathrm%20dx

A:依然考慮暴力展開

%5Cbegin%7Balign%7DI_4%26%3D%5Cfrac1%7B%5Csqrt2%7D%5Cint_0%5E1%7Bx(1-x)%5E2%7D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cbinom%7B2n%7D%7Bn%7D%5Cfrac%7Bx%5En%7D%7B8%5En%7D%5Cmathrm%20dx%5C%5C%26%3D%5Cfrac1%7B%5Csqrt2%7D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cbinom%7B2n%7D%7Bn%7D%5Cfrac1%7B8%5En%7D%5Cint_0%5E1%7Bx%5E%7Bn%2B1%7D(1-x)%5E2%7D%5Cmathrm%20dx%5C%5C%26%3D%5Cfrac1%7B%5Csqrt2%7D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cbinom%7B2n%7Dn%5Cfrac1%7B8%5En%7DB(n%2B2%2C3)%5C%5C%26%3D%5Csqrt2%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cbinom%7B2n%7Dn%5Cfrac%7B1%7D%7B8%5En%7D%5Ccdot%5Cfrac1%7B(n%2B2)(n%2B3)(n%2B4)%7D%5Cend%7Balign%7D

F(z)%3A%3D%7B%5Csqrt2%7D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cbinom%7B2n%7Dn%5Cfrac%7B1%7D%7B8%5En%7D%5Cfrac%7Bx%5E%7Bn%2B4%7D%7D%7B(n%2B2)(n%2B3)(n%2B4)%7D

則?I_4%3DF(1)%2CF'''(x)%3D2x%2F%5Csqrt%7B2-x%7D ,所以

%5Cbegin%7Balign%7D%0AI_4%26%3D%5Cint_0%5E1%5Cint_%7B0%7D%5E%7Bz%7D%5Cint_0%5E%7By%7D%5Cfrac%20%7B2x%7D%7B%5Csqrt%20%7B2-x%7D%7D%5Cmathrm%20dx%5Cmathrm%20dy%5Cmathrm%20dz%0A%5C%5C%26%3D-%5Cfrac43%5Cint_0%5E1%5Cint_0%5Ez%5Csqrt%7B2-y%7D%5Cleft(y%2B4%5Cright)%5Cmathrm%20dy%5Cmathrm%20dz%2B%5Cfrac%7B2%5E%7B7%2F2%7D%7D%7B3%7D%0A%5C%5C%26%3D-%5Cfrac43%5Cint_0%5E1%5Cint_y%5E1%5Csqrt%7B2-y%7D%5Cleft(y%2B4%5Cright)%5Cmathrm%20dz%5Cmathrm%20dy%2B%5Cfrac%7B2%5E%7B7%2F2%7D%7D%7B3%7D%0A%5C%5C%26%3D%5Cfrac43%5Cint_0%5E1%5Csqrt%7B2-y%7D%5Cleft(y%2B4%5Cright)(y-1)%5Cmathrm%20dy%2B%5Cfrac%7B2%5E%7B7%2F2%7D%7D%7B3%7D%0A%5C%5C%26%3D%5Cfrac%7B2%5E%7B7%2F2%7D%7D%7B3%7D-%5Cfrac%20%7B16%7D%7B105%7D(13%2B8%5Csqrt2)%0A%5C%5C%26%3D%5Cfrac8%7B105%7D(19%5Csqrt2-26)%0A%5Cend%7Balign%7D?

%5Csquare

沒有積分遼,所以最后來道級數(shù)收尾吧

Q5:I_5%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B1%7D%7B(n%5E2%2B1)%5E2%7D

A:考慮余切函數(shù)的Fourier展開

%5Ccot%5Cpi%20z%3D%5Cfrac1%7B%5Cpi%20z%7D%2B%5Cfrac1%5Cpi%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B2z%7D%7Bz%5E2-n%5E2%7D

令?z%3Di?,得

i%5Cfrac%7Be%5E%7B2%5Cpi%7D%2B1%7D%7Be%5E%7B2%5Cpi%7D-1%7D%3D%5Cfrac1%7B%5Cpi%20i%7D-%5Cfrac1%5Cpi%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B2i%7D%7Bn%5E2%2B1%7D

也就是

%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7Bn%5E2%2B1%7D%3D%5Cfrac%5Cpi2%5Ccdot%5Cfrac%7Be%5E%7B2%5Cpi%7D%2B1%7D%7Be%5E%7B2%5Cpi%7D-1%7D-%5Cfrac12

對余切函數(shù)取一次導數(shù)并令?z%3Di 得到

%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B1%7D%7B(n%5E2%2B1)%5E2%7D%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Bn%5E2%7D%7B(n%5E2%2B1)%5E2%7D%2B%5Cfrac%7B2e%5E%7B2%5Cpi%7D%7D%7B(e%5E%7B2%5Cpi%7D-1)%5E2%7D-%5Cfrac1%7B2%5Cpi%7D

而又有

%5Cbegin%7Balign%7D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Bn%5E2%7D%7B(n%5E2%2B1)%5E2%7D%26%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7Bn%5E2%2B1%7D-%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B1%7D%7B(n%5E2%2B1)%5E2%7D%5C%5C%26%3D%5Cfrac%5Cpi2%5Ccdot%5Cfrac%7Be%5E%7B2%5Cpi%7D%2B1%7D%7Be%5E%7B2%5Cpi%7D-1%7D-%5Cfrac12-%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B1%7D%7B(n%5E2%2B1)%5E2%7D%5Cend%7Balign%7D

所以

I_5%3D%5Cfrac%5Cpi4%5Ccdot%5Cfrac%7Be%5E%7B2%5Cpi%7D%2B1%7D%7Be%5E%7B2%5Cpi%7D-1%7D%2B%5Cfrac%7Be%5E%7B2%5Cpi%7D%7D%7B(e%5E%7B2%5Cpi%7D-1)%5E2%7D-%5Cfrac%5Cpi4-%5Cfrac14

%5Csquare

一杯茶,一包煙,一道積分寫一天。

E.N.D

寫幾個積分的評論 (共 條)

分享到微博請遵守國家法律
清原| 莲花县| 乾安县| 皮山县| 嘉义市| 库尔勒市| 尖扎县| 喜德县| 孟州市| 施秉县| 双牌县| 奇台县| 德昌县| 宣化县| 万山特区| 沂源县| 鸡泽县| 礼泉县| 天门市| 普宁市| 浦县| 台前县| 建阳市| 叶城县| 桑植县| 武陟县| 桃江县| 揭西县| 南溪县| 宜兴市| 江永县| 廉江市| 会同县| 灌阳县| 铅山县| 夹江县| 和平区| 政和县| 枝江市| 大连市| 石狮市|