和SOLIDWORKS Motion一起“科學(xué)起跳,滯空扣籃”!
2023-05-29 14:12 作者:solidworks鑫辰科技 | 我要投稿
最近的童年記憶動漫看了么?是不是又開始熱血沸騰了?在絕殺時刻你的心是不是也跟著主角的“反重力跳躍”一起揪了起來?“起跳”“滯空”“扣籃”為什么人的“滯空”時間長的像一個世紀(jì)?在現(xiàn)實世界中,一個人起跳的“滯空”時間最長能有多久?打開SOLIDWORKS
Motion一起“科學(xué)起跳,滯空扣籃”吧!
問題定義
人向上跳躍,受引力影響,最終會落回到地面上,在邊界條件下,這樣能形成的滯空時間(即腳離開地面至腳落回地面額時間差)會有多長呢?

人體模型體重98Kg(如果使用中間格式模型,請手動設(shè)置體重為98Kg,簡化假定某人彈跳的力約為8600牛)地球引力系數(shù)9.81m/s2。人起跳時首先下蹲,
然后腳給地面施加向下的力(常說的蹬地),由作用力與反作用力的關(guān)系,地面同時給人施加向上的力,當(dāng)該力大于人體重力時,人體會獲得一個加速度,人就跳起來了。
力量越大跳的越高,由于起跳的時間很短,施加力的時間也很短,受引力影響,人回降落回地面。為量化這個過程,可以簡化假定某人彈跳的力約為8600牛,
起跳時間為0.1S,即力量從0S、ON開始,0.1S達(dá)到峰值8600N,橫向風(fēng)等受力情況不予考慮。最終經(jīng)過運算結(jié)合圖表,可知,在地球上起跳滯空時間為1S左右。

小提示:可在運動分析(Motion)中添加“線段”力的方式描述上過程哦,在線段力里選擇三次曲線(Cubic類型)分段類型即可。
標(biāo)簽: