最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

目標(biāo)檢測(cè) build_target函數(shù)

2023-03-19 16:10 作者:神兮兮的喵社長(zhǎng)  | 我要投稿

在搞目標(biāo)檢測(cè)的時(shí)候,對(duì)目標(biāo)檢測(cè)的數(shù)據(jù)集處理有多疑惑。

比如:

目標(biāo)數(shù)據(jù)是如何產(chǎn)生的,也就是groundtruth是如何誕生的。

在讀取的過(guò)程中,數(shù)據(jù)集中又是如何展現(xiàn)的

在計(jì)算loss的過(guò)程中,又是如何進(jìn)行計(jì)算的

為什么yolov5中,很多細(xì)節(jié)沒(méi)有表現(xiàn)出來(lái),我們應(yīng)該怎么閱讀yolov5的代碼?

以下內(nèi)容在直播中出現(xiàn),但是不會(huì)在專欄投稿里面出現(xiàn):

在目標(biāo)數(shù)據(jù)集中,數(shù)據(jù)格式為:標(biāo)簽 中心x 中心y 寬w?高h(yuǎn)

The image of targets:? tensor([0.00000e+00, 2.90000e+01, 5.88579e-01, 4.03505e-01, 2.85181e-02, 9.58207e-03])

target shape:? torch.Size([84, 6])

number of anchor:? 3 ; number of targets:? 84

gain shape:? torch.Size([7])

original ai shape:? torch.Size([3])

view ai shape:? torch.Size([3, 1])

repeat ai shape:? torch.Size([3, 84])

The none ai shape:? torch.Size([3, 84, 1])

targets shape:? torch.Size([3, 84, 7])

The length of predictions is? 3

The anchor:?

tensor([[1.25000, 1.62500],

? ? ? ? [2.00000, 3.75000],

? ? ? ? [4.12500, 2.87500]])

prediction shape:? torch.Size([8, 3, 80, 80, 85])

The anchors' shape:? torch.Size([3, 2])

the gain is? tensor([ 1.,? 1., 80., 80., 80., 80.,? 1.])

The shape of t:? torch.Size([3, 84, 7])

The r's shape:? torch.Size([3, 84, 2])

The j shape is? torch.Size([3, 84])

The t shape is? torch.Size([93, 7])

The gxy shape is? torch.Size([93, 2])

gain[[2,3]] is? tensor([80., 80.])

The gxi shape is? torch.Size([93, 2])

j, k are? torch.Size([93])? ?torch.Size([93])

l, m are? torch.Size([93])? ?torch.Size([93])

The stack j shape is? torch.Size([5, 93])

The repeat t is? torch.Size([5, 93, 7])

The filter t is? torch.Size([276, 7])

The offsets shape is? torch.Size([276, 2])

The shape of bc:? torch.Size([276, 2])

The a shape is? torch.Size([276])

The b shape is? torch.Size([276])

The c shape is? torch.Size([276])

The shape of gij is? torch.Size([276, 2])

The shape of gi is? torch.Size([276])

The shape of gj is? torch.Size([276])

The anchor:?

tensor([[1.87500, 3.81250],

? ? ? ? [3.87500, 2.81250],

? ? ? ? [3.68750, 7.43750]])

prediction shape:? torch.Size([8, 3, 40, 40, 85])

The anchors' shape:? torch.Size([3, 2])

the gain is? tensor([ 1.,? 1., 40., 40., 40., 40.,? 1.])

The shape of t:? torch.Size([3, 84, 7])

The r's shape:? torch.Size([3, 84, 2])

The j shape is? torch.Size([3, 84])

The t shape is? torch.Size([115, 7])

The gxy shape is? torch.Size([115, 2])

gain[[2,3]] is? tensor([40., 40.])

The gxi shape is? torch.Size([115, 2])

j, k are? torch.Size([115])? ?torch.Size([115])

l, m are? torch.Size([115])? ?torch.Size([115])

The stack j shape is? torch.Size([5, 115])

The repeat t is? torch.Size([5, 115, 7])

The filter t is? torch.Size([345, 7])

The offsets shape is? torch.Size([345, 2])

The shape of bc:? torch.Size([345, 2])

The a shape is? torch.Size([345])

The b shape is? torch.Size([345])

The c shape is? torch.Size([345])

The shape of gij is? torch.Size([345, 2])

The shape of gi is? torch.Size([345])

The shape of gj is? torch.Size([345])

The anchor:?

tensor([[ 3.62500,? 2.81250],

? ? ? ? [ 4.87500,? 6.18750],

? ? ? ? [11.65625, 10.18750]])

prediction shape:? torch.Size([8, 3, 20, 20, 85])

The anchors' shape:? torch.Size([3, 2])

the gain is? tensor([ 1.,? 1., 20., 20., 20., 20.,? 1.])

The shape of t:? torch.Size([3, 84, 7])

The r's shape:? torch.Size([3, 84, 2])

The j shape is? torch.Size([3, 84])

The t shape is? torch.Size([104, 7])

The gxy shape is? torch.Size([104, 2])

gain[[2,3]] is? tensor([20., 20.])

The gxi shape is? torch.Size([104, 2])

j, k are? torch.Size([104])? ?torch.Size([104])

l, m are? torch.Size([104])? ?torch.Size([104])

The stack j shape is? torch.Size([5, 104])

The repeat t is? torch.Size([5, 104, 7])

The filter t is? torch.Size([310, 7])

The offsets shape is? torch.Size([310, 2])

The shape of bc:? torch.Size([310, 2])

The a shape is? torch.Size([310])

The b shape is? torch.Size([310])

The c shape is? torch.Size([310])

The shape of gij is? torch.Size([310, 2])

The shape of gi is? torch.Size([310])

The shape of gj is? torch.Size([310])


目標(biāo)檢測(cè) build_target函數(shù)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
普陀区| 合水县| 樟树市| 木里| 清新县| 垣曲县| 遂宁市| 彩票| 云和县| 永兴县| 龙里县| 岳普湖县| 建阳市| 泰和县| 吉林市| 南雄市| 同德县| 阿坝县| 城步| 安泽县| 福贡县| 迭部县| 临沭县| 巴彦县| 盘锦市| 荥经县| 油尖旺区| 河北区| 乐都县| 宁波市| 商河县| 余庆县| 松江区| 惠来县| 新竹市| 鄂州市| 桃园市| 长岛县| 昔阳县| 浠水县| 东乌珠穆沁旗|