最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

用多邊形滾動逼近計(jì)算擺線長(繞遠(yuǎn)路系列)

2023-06-16 17:52 作者:現(xiàn)代微積分  | 我要投稿

此探索源于一道初中題:

如圖:

邊長為2的正方形置于地面,將正方形向前滾動一周,求點(diǎn)A運(yùn)動的軌跡總長度?

這道題本不難,先定性分析,則A先以O_1為圓心,2為半徑轉(zhuǎn)過90°;

再以O_2為圓心,2%5Csqrt%7B2%7D為半徑轉(zhuǎn)過90°;

然后以O_3為圓心,2為半徑轉(zhuǎn)過90°;

最后還要再滾一個(gè)90°正方形才算滾完一周,只不過最后一次A點(diǎn)的位置沒有變;

綜上,總長度為l%3D%5Cfrac%7B90%5E%5Ccirc%20%7D%7B360%5E%5Ccirc%20%7D%20%5Ctimes%202%5Cpi%20%5Ctimes%202%2B%5Cfrac%7B90%5E%5Ccirc%20%7D%7B360%5E%5Ccirc%20%7D%20%5Ctimes%202%5Csqrt%7B2%7D%20%5Cpi%20%5Ctimes%202%2B%5Cfrac%7B90%5E%5Ccirc%20%7D%7B360%5E%5Ccirc%20%7D%20%5Ctimes%202%5Cpi%20%5Ctimes%202

%3D(2%2B%5Csqrt%7B2%7D%20)%5Cpi%20

等等...這個(gè)軌跡怎么跟那啥有些像?

嗯,于是聯(lián)想到擺線

可是擺線那是圓上的一點(diǎn)呀?這可咋整捏?

于是我靈光一現(xiàn)!利用多邊形逼近可以試試!

考慮一個(gè)外接圓半徑為r的正n邊形,考慮其中一頂點(diǎn)A在滾動一周時(shí)轉(zhuǎn)過的總弧長

以正6邊形為例子

在滾動過程中,容易發(fā)現(xiàn):

(1)對于每段圓弧,圓心均是此時(shí)位于底邊右端的那個(gè)點(diǎn),每次滾過的角均為多邊形的外角%5Ctheta,%5Ctheta%3D%5Cfrac%7B2%5Cpi%20%7D%7Bn%7D%20

因此L%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20r_i%5Ctheta%20%3D%5Cfrac%7B2%5Cpi%20%7D%7Bn%7D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20r_i

(2)以正n邊形輪廓為參考,滾完一周,A恰好相當(dāng)于沿著正n邊形各個(gè)頂點(diǎn)"跳"了一輪

因此,半徑就等于從一個(gè)點(diǎn)出發(fā)向各個(gè)頂點(diǎn)引出的線段之和!


考慮在平面直角坐標(biāo)系中構(gòu)造圓x%5E2%2By%5E2%3Dr%5E2,圓周上均勻分布著點(diǎn):

(r%5Ccos(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di)%20%2Cr%5Csin%20(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di))

選其中一點(diǎn)(r%2C0)向各個(gè)頂點(diǎn)引出線段,則其各段表達(dá)式為:

%5Cbegin%7Balign*%7D%0Ar_i%20%20%26%20%3D%5Csqrt%7B%5Br%5Ccos(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di)-r%5D%5E2%2B%5Br%5Csin%20(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di)%5D%5E2%7D%20%5C%5C%0A%20%20%26%20%3Dr%5Csqrt%7B%5Ccos%5E2(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di)-2%5Ccos(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di)%2B1%2B%5Csin%5E2%20(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di)%7D%20%5C%5C%0A%20%20%26%20%3Dr%5Csqrt%7B2-2%5Ccos(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di)%7D%20%5C%5C%0A%20%20%26%20%3Dr%5Csqrt%7B4%5Csin%20%5E2(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di)%7D%20%5C%5C%0A%20%20%26%20%3D2r%5Csin(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di)%20%20%5C%5C%0A%5Cend%7Balign*%7D

ps:由于i=1,2,...,n,則sin(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di)%5Cgeqslant%200,故最后一步可脫去絕對值

于是L%3D%5Cfrac%7B2%5Cpi%20%7D%7Bn%7D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5B2r%5Csin(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di)%5D%3D%5Cfrac%7B4%5Cpi%20r%7D%7Bn%7D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Csin(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di)

我們需要求出后面那個(gè)數(shù)列的前n項(xiàng)和,考慮將其裂項(xiàng)!

啥?三角數(shù)列也能裂項(xiàng)?

是的,我們由和差化積公式:

%7B%5Clarge%20%5Ccos%20x-%5Ccos%20y%3D-2%5Csin%20%5Cfrac%7Bx%2By%7D%7B2%7D%5Csin%20%20%5Cfrac%7Bx-y%7D%7B2%7D%7D%20

于是

%5Cbegin%7Balign*%7D%0A%20%20%26%20%5Ccos%20%5Bk(i%2B1)%2Bb%5D-%5Ccos%20(ki%2Bb)%5C%5C%0A%20%20%26%20%3D-2%5Csin%20(ki%2B%5Cfrac%7Bk%7D%7B2%7D%20%2Bb)%5Csin%20%5Cfrac%7Bk%7D%7B2%7D%20%5C%5C%0A%5Cend%7Balign*%7D

%5Csin%20(ki%2B%5Cfrac%7Bk%7D%7B2%7D%20%2Bb)%3D-%5Cfrac%7B1%7D%7B2%5Csin%20%5Cfrac%7Bk%7D%7B2%7D%7D%20%5B%5Ccos%20%5Bk(i%2B1)%2Bb%5D-%5Ccos%20(ki%2Bb)%5D

與原式待定系數(shù),有:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0Ak%3D%5Cfrac%7B%5Cpi%20%7D%7Bn%7D%20%20%5C%5C%0A%5Cfrac%7Bk%7D%7B2%7D%2Bb%3D0%20%0A%5Cend%7Bmatrix%7D%5Cright.%0A%5CRightarrow%20%0A%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0Ak%3D%5Cfrac%7B%5Cpi%20%7D%7Bn%7D%20%20%5C%5C%0Ab%3D-%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%0A%5Cend%7Bmatrix%7D%5Cright.


%5Csin(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di)%3D-%5Cfrac%7B1%7D%7B2%5Csin%20%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%7D%20%5B%5Ccos%20%5B%5Cfrac%7B%5Cpi%20%7D%7Bn%7D(i%2B1)-%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%5D-%5Ccos%20(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di-%5Cfrac%7B%5Cpi%20%7D%7B2n%7D)%5D

求和得:

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Csin(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di)%3D-%5Cfrac%7B1%7D%7B2%5Csin%20%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%7D%20%5B%5Ccos%20%5B%5Cfrac%7B%5Cpi%20%7D%7Bn%7D(n%2B1)-%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%5D-%5Ccos%20(%5Cfrac%7B%5Cpi%20%7D%7Bn%7D-%5Cfrac%7B%5Cpi%20%7D%7B2n%7D)%5D

%7B%5Clarge%20%3D%5Cfrac%7B1%7D%7B%5Ctan%20%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%20%7D%20%7D%20


于是%5Cboxed%7B%7B%5Clarge%20L%3D%5Cfrac%7B4%5Cpi%20r%20%7D%7Bn%5Ctan%20%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%20%7D%20%7D%20%7D

這便是滾過一周總路徑長的表達(dá)式

驗(yàn)證:以原題為例外接圓半徑r%3D%5Csqrt%7B2%7D%20

上式命n=4得:L%3D%5Cfrac%7B4%5Csqrt%7B2%7D%20%5Cpi%20%7D%7B4%5Ctan%20%5Cfrac%7B%5Cpi%20%7D%7B8%7D%20%7D%20%3D(2%2B%5Csqrt%7B2%7D%20)%5Cpi%20

ps:%5Ctan%20%5Cfrac%7B%5Cpi%20%7D%7B8%7D%20%3D%5Csqrt%7B2%7D%20-1,可以用正切半角公式求,也可以用如下的幾何法:

延長等腰直角三角形一邊,延長長度等于斜邊長,然后等邊對等角得到22.5°,再用大的直角三角形可得其正切值

當(dāng)n無限大時(shí),正n邊形會趨近于圓,因此考慮取極限

%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B4%5Cpi%20r%20%7D%7Bn%5Ctan%20%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%20%7D%3D8r%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%7B%5Ccolor%7BRed%7D%20%7B%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%20%7D%7D%20%20%7D%7B%5Ctan%20%5Ccolor%7BRed%7D%20%7B%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%7D%7D

換元,令t%3D%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%20,%5Ctext%7B%E4%B8%8A%E5%BC%8F%7D%3D8r%5Clim_%7Bt%20%5Cto%200%7D%20%5Cfrac%7Bt%7D%7B%5Ctan%20t%7D

最后這個(gè)極限可以用洛必達(dá)or泰勒展開求之,但有沒有門檻低些的求法呢?有!

其中%5Cfrac%7B%5Ctan%20t%7D%7Bt%7D%20可視為正切函數(shù)%5Ctan%20x上一點(diǎn)(t%2C%5Ctan%20t)與原點(diǎn)連線(割線)的斜率

當(dāng)t%5Cto%200時(shí),斜率就趨近于在(0,0)處的切線斜率,據(jù)導(dǎo)數(shù)定義,有

%5Clim_%7Bt%20%5Cto%200%7D%20%5Cfrac%7B%5Ctan%20t-%5Ctan%200%7D%7Bt-0%7D%3D(%5Ctan%20x)'%7C%20_%7Bx%3D0%7D%3D%5Cfrac%7B1%7D%7B%5Ccos%5E2x%7D%20%7C%20_%7Bx%3D0%7D%3D1

取倒數(shù)得:%5Clim_%7Bt%20%5Cto%200%7D%20%5Cfrac%7Bt%7D%7B%5Ctan%20%20t%7D%3D1


于是%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20L%3D8r

這與用積分算出的結(jié)果是一樣的!

ps:用定義推導(dǎo)擺線方程以及用積分計(jì)算的方法參考專欄:美麗的擺線及其數(shù)學(xué)原理

以下是用desmos模擬的軌跡圖:

紅線為擺線的確切軌跡,藍(lán)線為多邊形滾動一周的軌跡

n=6
n=10
n=50

由此可見n%5Cto%20%5Cinfty%20時(shí)藍(lán)色軌跡就擬合于擺線!

ps:上述過程不知有無循環(huán)論證的嫌疑,若有大佬發(fā)現(xiàn)煩請指正。有一點(diǎn)值得肯定,即數(shù)學(xué)知識間的聯(lián)系是如此地美妙!數(shù)學(xué)——人類智慧的結(jié)晶!

用多邊形滾動逼近計(jì)算擺線長(繞遠(yuǎn)路系列)的評論 (共 條)

分享到微博請遵守國家法律
拉萨市| 陇南市| 房产| 铜山县| 昆山市| 怀化市| 互助| 桐柏县| 安阳市| 濉溪县| 台南县| 汉阴县| 乐山市| 孟州市| 海林市| 梅河口市| 井陉县| 贵阳市| 陵水| 建始县| 石城县| 孟村| 乐昌市| 南丰县| 宜君县| 高安市| 巴马| 西乌珠穆沁旗| 辽宁省| 昌宁县| 淮安市| 玉溪市| 三都| 松阳县| 丘北县| 克什克腾旗| 恭城| 元江| 望江县| 长垣县| 威远县|