最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

Riemann zeta函數(shù)與Basel問(wèn)題

2021-12-05 22:56 作者:子瞻Louis  | 我要投稿

已收錄至文集《雜文集》

本期專(zhuān)欄的內(nèi)容是對(duì)上一期的求和公式的兩個(gè)應(yīng)用

Riemann?Zeta函數(shù)

眾所周知,%5Czeta?函數(shù)本身是一個(gè)定義在?%5CRe(s)%EF%BC%9E1?上的函數(shù),

%5Czeta(s)%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B1%7D%7Bn%5E%7Bs%7D%7D

他在解析數(shù)論中極其重要,

從18世紀(jì)開(kāi)始,數(shù)學(xué)家Euler就已經(jīng)對(duì)它有所研究,他首先給出了調(diào)和級(jí)數(shù)?%5Czeta(1)?呈對(duì)數(shù)狀發(fā)散,并計(jì)算了?%5Czeta(2)%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B1%7D%7Bn%5E%7B2%7D%7D%3D%5Cfrac%7B%5Cpi%5E%7B2%7D%7D%7B6%7D?,解決了巴塞爾問(wèn)題,后又得到了該函數(shù)在偶數(shù)上的值,當(dāng)時(shí)他只討論到變量取整數(shù)的情況。

經(jīng)過(guò)了一段漫長(zhǎng)的時(shí)間,Riemann發(fā)表了一篇?jiǎng)濋_(kāi)時(shí)代的論文,他將這個(gè)函數(shù)進(jìn)行解析延拓,使他在復(fù)平面內(nèi)有了定義,并找到了它與素?cái)?shù)分布的關(guān)系,將它命名為Zeta函數(shù),隨后提出了著名Riemann猜想,這一猜想持續(xù)了一百五十年至今依舊沒(méi)有宣布解決,該猜想的重要性使得它被譽(yù)為“解析數(shù)論皇冠上的明珠”

所謂解析延拓就是把函數(shù)從較小的定義域拓展到一個(gè)更大的定義域使它在其內(nèi)收斂,

我們將利用E-M公式將zeta函數(shù)解析延拓到?%5CRe(s)%EF%BC%9E0

取正整數(shù)N,將zeta函數(shù)寫(xiě)成兩部分

%5Czeta(s)%3D%5Csum_%7Bn%3D1%7D%5E%7BN%7D%5Cfrac%7B1%7D%7Bn%5E%7Bs%7D%7D%2B%5Csum_%7Bn%EF%BC%9EN%7D%5Cfrac%7B1%7D%7Bn%5E%7Bs%7D%7D

另取正整數(shù)M>N,令?%5Crho(x)%3D%5Cfrac12-%5C%7Bx%5C%7D?,對(duì)下式用一階Euler-Maclaurin公式

%5Csum_%7BN%2B%5Cfrac%7B1%7D%7B2%7D%3C%20n%5Cleq%20M%2B%5Cfrac%7B1%7D%7B2%7D%7D%5Cfrac%7B1%7D%7Bn%5E%7Bs%7D%7D%3D%5Cint_%7BN%2B%5Cfrac%7B1%7D%7B2%7D%7D%5E%7BM%2B%5Cfrac%7B1%7D%7B2%7D%7D%5Cfrac%7Bdx%7D%7Bx%5E%7Bs%7D%7D%2Bs%5Cint_%7BN%2B%5Cfrac%7B1%7D%7B2%7D%7D%5E%7BM%2B%5Cfrac%7B1%7D%7B2%7D%7D%5Cfrac%7B%5Crho(x)%7D%7Bx%5E%7Bs%2B1%7D%7Ddx

%3D%5Cfrac%7B1%7D%7B1-s%7D%5Cleft(M%2B%5Cfrac%7B1%7D%7B2%7D%5Cright)%5E%7B1-s%7D-%5Cfrac%7B1%7D%7B1-s%7D%5Cleft(N%2B%5Cfrac%7B1%7D%7B2%7D%5Cright)%5E%7B1-s%7D%2Bs%5Cleft(%5Cint_%7BN%2B%5Cfrac%7B1%7D%7B2%7D%7D%5E%7BN%7D%2B%5Cint_%7BN%7D%5E%7BM%2B%5Cfrac%7B1%7D%7B2%7D%7D%5Cright)%5Cfrac%7B%5Crho(x)%7D%7Bx%5E%7Bs%2B1%7D%7Ddx

在第一個(gè)積分的積分區(qū)間中?%5Cleft%5C%7Bx%5Cright%5C%7D%3Dx-N,因此

s%5Cint_%7BN%2B%5Cfrac%7B1%7D%7B2%7D%7D%5E%7BN%7D%5Cfrac%7B%5Crho(x)%7D%7Bx%5E%7Bs%2B1%7D%7Ddx%3Ds%5Cint_%7BN%2B%5Cfrac%7B1%7D%7B2%7D%7D%5E%7BN%7D%5Cfrac%7B%5Cfrac%7B1%7D%7B2%7D%2BN-x%7D%7Bx%5E%7Bs%2B1%7D%7Ddx%3Ds%5Cint_%7BN%2B%5Cfrac%7B1%7D%7B2%7D%7D%5E%7BN%7D%5Cfrac%7B%5Cfrac%7B1%7D%7B2%7D%2BN%7D%7Bx%5E%7Bs%2B1%7D%7Ddx-s%5Cint_%7BN%2B%5Cfrac%7B1%7D%7B2%7D%7D%5E%7BN%7D%5Cfrac%7Bdx%7D%7Bx%5E%7Bs%7D%7D

%3D%5Cleft(N%2B%5Cfrac%7B1%7D%7B2%7D%5Cright)%5E%7B1-s%7D-%5Cfrac12N%5E%7B-s%7D-N%5E%7B1-s%7D-%5Cfrac%20s%7B1-s%7DN%5E%7B1-s%7D%2B%5Cfrac%20s%7B1-s%7D%5Cleft(N%2B%5Cfrac12%5Cright)%5E%7B1-s%7D

%3D%5Cfrac%7B1%7D%7B1-s%7D%5Cleft(N%2B%5Cfrac%7B1%7D%7B2%7D%5Cright)%5E%7B1-s%7D-%5Cfrac%7B1%7D%7B1-s%7DN%5E%7B1-s%7D-%5Cfrac12N%5E%7B-s%7D

代入到原式中

%5Csum_%7BN%2B%5Cfrac%7B1%7D%7B2%7D%3C%20n%5Cleq%20M%2B%5Cfrac%7B1%7D%7B2%7D%7D%5Cfrac%7B1%7D%7Bn%5E%7Bs%7D%7D%3D%5Cfrac%7B1%7D%7B1-s%7D%5Cleft(M%2B%5Cfrac%7B1%7D%7B2%7D%5Cright)%5E%7B1-s%7D-%5Cfrac%7B1%7D%7B1-s%7DN%5E%7B1-s%7D-%5Cfrac12N%5E%7B-s%7D

%2Bs%5Cint_%7BN%7D%5E%7BM%2B%5Cfrac%7B1%7D%7B2%7D%7D%5Cfrac%7B%5Crho(x)%7D%7Bx%5E%7Bs%2B1%7D%7Ddx

令?M%5Crightarrow%20%5Cinfty,當(dāng)?%5CRe(s)%EF%BC%9E1?時(shí),

%5Csum_%7BN%2B%5Cfrac%7B1%7D%7B2%7D%3C%20n%5Cleq%20M%2B%5Cfrac%7B1%7D%7B2%7D%7D%5Cfrac%7B1%7D%7Bn%5E%7Bs%7D%7D%3D%5Csum_%7Bn%3E%20N%2B%5Cfrac%7B1%7D%7B2%7D%7D%5Cfrac1%7Bn%5E%7Bs%7D%7D%3D-%5Cfrac%7B1%7D%7B1-s%7DN%5E%7B1-s%7D-%5Cfrac12N%5E%7B-s%7D%2Bs%5Cint_%7BN%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%5Crho(x)%7D%7Bx%5E%7Bs%2B1%7D%7Ddx

代回到?%5Czeta(s)?中,可得

%5Czeta(s)%3D%5Csum_%7Bn%3D1%7D%5E%7BN%7D%5Cfrac%7B1%7D%7Bn%5E%7Bs%7D%7D-%5Cfrac%7B1%7D%7B1-s%7DN%5E%7B1-s%7D-%5Cfrac12N%5E%7B-s%7D%2Bs%5Cint_%7BN%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%5Crho(x)%7D%7Bx%5E%7Bs%2B1%7D%7Ddx

易發(fā)現(xiàn)最后確定的積分在?%5CRe(s)%EF%BC%9E0?內(nèi)都是收斂的,所以上式在此區(qū)域內(nèi)是解析的,因此上式即為?%5Czeta(s)?在?%5CRe(s)%EF%BC%9E0?的解析延拓

Basel問(wèn)題

著名的Basel問(wèn)題就是全體自然數(shù)倒數(shù)的平方之和,即?%5Czeta(2)?的值,

對(duì)于這個(gè)問(wèn)題已經(jīng)有了許許多多的解法,我們不妨用Poison求和公式來(lái)試試解決它

考慮?f(x)%3De%5E%7B-a%5Cvert%20x%5Cvert%7D%2Ca%5Cgeq%200?,其Fourier變換為

%5Chat%20f(%5Cxi)%3D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7De%5E%7B-a%5Cvert%20x%5Cvert-2%5Cpi%20ix%5Cxi%7Ddx%3D%5Cint_%7B-%5Cinfty%7D%5E%7B0%7De%5E%7B(a-2%5Cpi%20i%5Cxi)x%7Ddx%2B%5Cint_%7B0%7D%5E%7B%5Cinfty%7De%5E%7B-(a%2B2%5Cpi%20i%5Cxi)x%7Ddx

%3D%5Cfrac1%7Ba-2%5Cpi%20i%5Cxi%7D%2B%5Cfrac1%7Ba%2B2%5Cpi%20i%5Cxi%7D%3D%5Cfrac%7B2a%7D%7Ba%5E%7B2%7D%2B4%5Cpi%20%5E%7B2%7D%5Cxi%5E%7B2%7D%7D

又有

%5Csum_%7Bn%3D-%5Cinfty%7D%5E%7B%5Cinfty%7De%5E%7B-a%5Cvert%20n%5Cvert%7D%3D1%2B2%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7De%5E%7B-an%7D%3D1%2B%5Cfrac%7B2e%5E%7B-a%7D%7D%7B1-e%5E%7B-a%7D%7D%3D%5Cfrac%7Be%5E%7Ba%7D%2B1%7D%7Be%5Ea-1%7D

由上訴即Poisson求和公式,得出

%5Csum_%7Bk%3D-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cfrac%7B2a%7D%7Ba%5E%7B2%7D%2B4%5Cpi%20%5E%7B2%7Dk%5E%7B2%7D%7D%3D%5Cfrac%7Be%5E%7Ba%7D%2B1%7D%7Be%5Ea-1%7D

注意到,

%5Csum_%7Bk%3D-%5Cinfty%7D%5E%7B1%7D%5Cfrac%7B2a%7D%7Ba%5E%7B2%7D%2B4%5Cpi%20%5E%7B2%7Dk%5E%7B2%7D%7D%3D%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B2a%7D%7Ba%5E%7B2%7D%2B4%5Cpi%20%5E%7B2%7D(-k)%5E%7B2%7D%7D%3D%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B2a%7D%7Ba%5E%7B2%7D%2B4%5Cpi%20%5E%7B2%7Dk%5E%7B2%7D%7D

于是可將等式左邊變換為

2%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B2a%7D%7Ba%5E%7B2%7D%2B4%5Cpi%20%5E%7B2%7Dk%5E%7B2%7D%7D%2B%5Cfrac2%7Ba%7D%3D%5Cfrac%7Be%5E%7Ba%7D%2B1%7D%7Be%5Ea-1%7D

進(jìn)一步

4a%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B1%7D%7Ba%5E%7B2%7D%2B4%5Cpi%20%5E%7B2%7Dk%5E%7B2%7D%7D%3D%5Cfrac%7Be%5E%7Ba%7D%2B1%7D%7Be%5Ea-1%7D-%5Cfrac2a

%5CRightarrow%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B1%7D%7Ba%5E%7B2%7D%2B4%5Cpi%20%5E%7B2%7Dk%5E%7B2%7D%7D%3D%5Cfrac1%7B4a%7D%5Cfrac%7Be%5E%7Ba%7D%2B1%7D%7Be%5Ea-1%7D-%5Cfrac1%7B2a%5E2%7D

來(lái)康康當(dāng)?a%5Crightarrow%200%5E%2B?時(shí)右邊的極限,

%5Clim_%7Ba%5Cto0%5E%2B%7D%5Cfrac1%7B4a%7D%5Cfrac%7Be%5E%7Ba%7D%2B1%7D%7Be%5Ea-1%7D-%5Cfrac1%7B2a%5E2%7D%3D%5Clim_%7Ba%5Cto0%5E%2B%7D%5Cfrac%7B(a-2)e%5Ea%2Ba%2B2%7D%7B4a%5E2(e%5Ea-1)%7D

看上去有點(diǎn)嚇人,但我們還是有方法解決的

對(duì)右邊洛必達(dá)(L'Hopital,再考慮Maclaurin展開(kāi)

%5Cbegin%7Baligned%7D%5Clim_%7Ba%5Cto0%5E%2B%7D%5Cfrac%7B(a-1)e%5Ea%2B1%7D%7B4a%5E2e%5Ea%2B8a(e%5Ea-1)%7D%26%3D%5Clim_%7Ba%5Cto0%5E%2B%7D%5Cfrac%7Bae%5Ea%7D%7B4a%5E2e%5Ea%2B16ae%5Ea%2B8(e%5Ea-1)%7D%5C%5C%26%3D%5Clim_%7Ba%5Cto0%5E%2B%7D%5Cfrac1%7B4a%2B16%2B%5Cfrac8a(1-e%5E%7B-a%7D)%7D%5C%5C%26%3D%5Clim_%7Ba%5Cto0%5E%2B%7D%5Cfrac1%7B4a%2B16%2B%5Cfrac8a(a-%5Cfrac12a%5E2%2Bo(a%5E3))%7D%5C%5C%26%3D%5Clim_%7Ba%5Cto0%5E%2B%7D%5Cfrac1%7B24%2Bo(a%5E2)%7D%3D%5Cfrac1%7B24%7D%5Cend%7Baligned%7D

則我們得到了

%5Clim_%7Ba%5Cto0%5E%2B%7D%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B1%7D%7Ba%5E%7B2%7D%2B4%5Cpi%20%5E%7B2%7Dk%5E%7B2%7D%7D%3D%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B1%7D%7B4%5Cpi%20%5E%7B2%7Dk%5E%7B2%7D%7D%3D%5Cfrac1%7B24%7D

%5CRightarrow%20%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B1%7D%7Bk%5E%7B2%7D%7D%3D%5Cfrac%7B%5Cpi%20%5E2%7D%7B6%7D

這就是大名鼎鼎的Basel問(wèn)題的解了

但是值得一提的是有一種更直接的方法——Fourier級(jí)數(shù)

Fourier級(jí)數(shù)法

考慮f(x)%3Dx%5E2%2Cx%5Cin(-%5Cpi%2C%5Cpi)的Fourier級(jí)數(shù)展開(kāi),

之所以取(-π,π)是因?yàn)檫@樣以2π為周期展開(kāi)的展開(kāi)式更簡(jiǎn)潔,同時(shí)也提供了方便

f(x)%3D%5Cfrac%20%7Ba_0%7D2%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20a_n%5Ccos%20nx%2Bb_n%5Csin%20nx

其中,可以直接得到:

b_n%3D%5Cfrac1%7B%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%7B%5Cpi%7Dx%5E2%5Csin%20nx%5Cmathrm%20dx%3D0

這是因?yàn)楸环e函數(shù)是奇函數(shù)在對(duì)稱(chēng)區(qū)間上積分為零

接下來(lái)計(jì)算它的其他系數(shù),容易得到

a_0%3D%5Cfrac1%7B%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20x%5E2%5Cmathrm%20d%20x%3D%5Cfrac%7B2%5Cpi%5E2%7D3

通過(guò)兩次分部積分又可得

%5Cbegin%7Baligned%7Da_n%26%3D%5Cfrac1%7B%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20x%5E2%5Ccos%20nx%5Cmathrm%20dx%5C%5C%26%3D%5Cleft%5B%5Cfrac%7Bx%5E2%5Csin%20nx%7D%7B%5Cpi%20n%7D%5Cright%5D_%7B-%5Cpi%7D%5E%7B%5Cpi%7D-%5Cfrac2%7B%5Cpi%20n%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20x%5Csin%20nx%5Cmathrm%20dx%5C%5C%26%3D%5Cleft%5B%5Cfrac%7B2x%5Ccos%20nx%7D%7B%5Cpi%20n%5E2%7D%5Cright%5D_%7B-%5Cpi%7D%5E%7B%5Cpi%7D-%5Cfrac2%7B%5Cpi%20n%5E2%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%5Ccos%20nx%5Cmathrm%20dx%5C%5C%26%3D(-1)%5En%5Cfrac4%7Bn%5E2%7D%5Cend%7Baligned%7D

于是

x%5E2%3D%5Cfrac%20%7B%5Cpi%20%5E2%7D3%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20(-1)%5En%5Cfrac4%7Bn%5E2%7D%5Ccos%20nx

這樣結(jié)果就顯而易見(jiàn)了,只需要代入x%3D0,就可以得到

%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20(-1)%5E%7Bn-1%7D%5Cfrac1%7Bn%5E2%7D%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7Bn%5E2%7D-2%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7B4n%5E2%7D%3D%5Cfrac%20%7B%5Cpi%20%5E2%7D%7B12%7D

%5CRightarrow%20%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7Bn%5E2%7D%3D%5Cfrac%7B%5Cpi%5E2%7D6

本期專(zhuān)欄也到這里就結(jié)束了,拜拜~


Riemann zeta函數(shù)與Basel問(wèn)題的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
海林市| 岢岚县| 锡林浩特市| 札达县| 金塔县| 定日县| 汝阳县| 商丘市| 福海县| 镇宁| 磐石市| 房产| 贡觉县| 保康县| 南漳县| 永嘉县| 定兴县| 黔西县| 岐山县| 满城县| 瑞昌市| 鄯善县| 上思县| 佛坪县| 射阳县| 阜宁县| 莱芜市| 库车县| 体育| 夏津县| 芷江| 巴青县| 隆回县| 都兰县| 宁蒗| 高尔夫| 靖边县| 广安市| 张家口市| 湘西| 巧家县|