【lssvm預測】基于灰狼算法優(yōu)化LSSVM數(shù)據(jù)回歸預測含Matlab源碼
1 簡介
隨著現(xiàn)代智能交通系統(tǒng)的發(fā)展,準確的交通流量預測,尤其是短時交通流量的預測,對實時交通控制的重要性日益凸顯.為了解決交通流量數(shù)據(jù)強非線性對預測精度的影響,本文基于最小二乘支持向量機研究交通流量預測方法.提出了一種灰狼優(yōu)化算法優(yōu)化LSSVM的懲罰因子γ和核函數(shù)參數(shù)σ,實現(xiàn)對短時交通流的精準預測.實驗結果表明,GWO優(yōu)化LSSVM的泛化性能和魯棒性優(yōu)于其他同類方法,可以實現(xiàn)交通流的精準預測.
2 部分代碼
% Grey Wolf Optimizer
function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)
% initialize alpha, beta, and delta_pos
Alpha_pos=zeros(1,dim);
Alpha_score=inf; %change this to -inf for maximization problems
Beta_pos=zeros(1,dim);
Beta_score=inf; %change this to -inf for maximization problems
Delta_pos=zeros(1,dim);
Delta_score=inf; %change this to -inf for maximization problems
%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);
Convergence_curve=zeros(1,Max_iter);
l=0;% Loop counter
% Main loop
while l<Max_iter
? ?for i=1:size(Positions,1) ?
? ? ? % Return back the search agents that go beyond the boundaries of the search space
? ? ? ?Flag4ub=Positions(i,:)>ub;
? ? ? ?Flag4lb=Positions(i,:)<lb;
? ? ? ?Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; ? ? ? ? ? ? ?
? ? ? ?% Calculate objective function for each search agent
? ? ? ?fitness=fobj(Positions(i,:));
? ? ? ?% Update Alpha, Beta, and Delta
? ? ? ?if fitness<Alpha_score
? ? ? ? ? ?Alpha_score=fitness; % Update alpha
? ? ? ? ? ?Alpha_pos=Positions(i,:);
? ? ? ?end
? ? ? ?if fitness>Alpha_score && fitness<Beta_score
? ? ? ? ? ?Beta_score=fitness; % Update beta
? ? ? ? ? ?Beta_pos=Positions(i,:);
? ? ? ?end
? ? ? ?if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score
? ? ? ? ? ?Delta_score=fitness; % Update delta
? ? ? ? ? ?Delta_pos=Positions(i,:);
? ? ? ?end
? ?end
? ?a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0
? ?% Update the Position of search agents including omegas
? ?for i=1:size(Positions,1)
? ? ? ?for j=1:size(Positions,2) ? ?
? ? ? ? ? ?r1=rand(); % r1 is a random number in [0,1]
? ? ? ? ? ?r2=rand(); % r2 is a random number in [0,1]
? ? ? ? ? ?A1=2*a*r1-a; % Equation (3.3)
? ? ? ? ? ?C1=2*r2; % Equation (3.4)
? ? ? ? ? ?D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
? ? ? ? ? ?X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1
? ? ? ? ? ?r1=rand();
? ? ? ? ? ?r2=rand();
? ? ? ? ? ?A2=2*a*r1-a; % Equation (3.3)
? ? ? ? ? ?C2=2*r2; % Equation (3.4)
? ? ? ? ? ?D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
? ? ? ? ? ?X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2 ? ? ?
? ? ? ? ? ?r1=rand();
? ? ? ? ? ?r2=rand();
? ? ? ? ? ?A3=2*a*r1-a; % Equation (3.3)
? ? ? ? ? ?C3=2*r2; % Equation (3.4)
? ? ? ? ? ?D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
? ? ? ? ? ?X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3 ? ? ? ? ? ?
? ? ? ? ? ?Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)
? ? ? ?end
? ?end
? ?l=l+1; ? ?
? ?Convergence_curve(l)=Alpha_score;
end
3 仿真結果
4 參考文獻
[1]伍軼鳴, 孫博文, 成榮紅,等. 基于灰狼算法的LSSVM模型預測凝析氣藏露點壓力研究[J]. 西安石油大學學報:自然科學版, 2020, 35(2):7.