最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

一個無窮級數(shù)

2023-01-15 12:49 作者:艾琳娜的糖果屋  | 我要投稿

? ? ? ? 在推導一個二重級數(shù)的時候得到了一個副產(chǎn)物%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%5Ccosh%20%5Cleft(%20n%5Cpi%20%5Cright)%7D%7Bn%5E2%5Csinh%20%5E2%5Cleft(%20n%5Cpi%20%5Cright)%7D%7D%3D%5Cfrac%7B%5Cpi%20%5E2%7D%7B45%7D-%5Cfrac%7BG%7D%7B3%7D%0A%0A,形式比較和諧,下面來推導一下。

先考慮級數(shù)%0A

%5Csum_%7B%5Cleft(%20n%2Cm%20%5Cright)%20%5Cne%20%5Cleft(%200%2C0%20%5Cright)%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5E%7Bn%2Bm%7D%7D%7B%5Cleft(%20n%5E2%2Bm%5E2%20%5Cright)%20%5Es%7D%7D%3D%0A%5Cfrac%7B1%7D%7B%5CGamma%20%5Cleft(%20s%20%5Cright)%7D%5Cint_0%5E%7B%5Cinfty%7D%7Bt%5E%7Bs-1%7D%5Csum_%7B%5Cleft(%20n%2Cm%20%5Cright)%20%5Cne%20%5Cleft(%200%2C0%20%5Cright)%7D%7B%5Cleft(%20-1%20%5Cright)%20%5E%7Bn%2Bm%7De%5E%7B-%5Cleft(%20n%5E2%2Bm%5E2%20%5Cright)%20t%7D%7Ddt%7D%0A%0A

%0A%3D%5Cfrac%7B1%7D%7B%5CGamma%20%5Cleft(%20s%20%5Cright)%7D%5Cint_0%5E%7B%5Cinfty%7D%7Bt%5E%7Bs-1%7D%5Cleft(%20%5Cvartheta%20_%7B4%7D%5E%7B2%7D%5Cleft(%20e%5E%7B-t%7D%20%5Cright)%20-1%20%5Cright)%20dt%7D%5C%20%5C%20%5C%0A%5Cvartheta%20_4%5Cleft(%20q%20%5Cright)%20%3D%5Csum_%7Bn%3D-%5Cinfty%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20-1%20%5Cright)%20%5Enq%5E%7Bn%5E2%7D%7D%0A%0A%0A%0A

同時利用雅可比nd函數(shù)的傅里葉展開%0A%5Cmathrm%7Bnd%7D%5Cleft(%202Kv%20%5Cright)%20%3D%5Cfrac%7B%5Cpi%7D%7B2Kk%5Cprime%7D%2B%5Cfrac%7B2%5Cpi%7D%7BKk%5Cprime%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5Enq%5En%7D%7B1%2Bq%5E%7B2n%7D%7D%5Ccos%20%5Cleft(%202n%5Cpi%20v%20%5Cright)%7D

v%3D0得到

%0A%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5Enq%5En%7D%7B1%2Bq%5E%7B2n%7D%7D%7D%3D%5Cfrac%7B1%7D%7B4%7D%5Cleft(%20%5Cvartheta%20_%7B4%7D%5E%7B2%7D%5Cleft(%20q%20%5Cright)%20-1%20%5Cright)%20%0A,繼續(xù)帶入積分,再次展開整理

%0A%5Cfrac%7B1%7D%7B%5CGamma%20%5Cleft(%20s%20%5Cright)%7D%5Cint_0%5E%7B%5Cinfty%7D%7Bt%5E%7Bs-1%7D%5Cleft(%20%5Cvartheta%20_%7B4%7D%5E%7B2%7D%5Cleft(%20e%5E%7B-t%7D%20%5Cright)%20-1%20%5Cright)%20dt%7D%3D%5Cfrac%7B4%7D%7B%5CGamma%20%5Cleft(%20s%20%5Cright)%7D%5Cint_0%5E%7B%5Cinfty%7D%7Bt%5E%7Bs-1%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5Enq%5En%7D%7B1%2Bq%5E%7B2n%7D%7D%7Ddt%7D%0A

%0A%3D%5Cfrac%7B4%7D%7B%5CGamma%20%5Cleft(%20s%20%5Cright)%7D%5Cint_0%5E%7B%5Cinfty%7D%7Bt%5E%7Bs-1%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20-1%20%5Cright)%20%5Enq%5En%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20-1%20%5Cright)%20%5Ekq%5E%7B2nk%7D%7D%7Ddt%7D%3D%5Cfrac%7B4%7D%7B%5CGamma%20%5Cleft(%20s%20%5Cright)%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20-1%20%5Cright)%20%5En%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20-1%20%5Cright)%20%5Ek%7D%7D%5Cint_0%5E%7B%5Cinfty%7D%7Bt%5E%7Bs-1%7De%5E%7B-n%5Cleft(%201%2B2k%20%5Cright)%20t%7Ddt%7D%0A

%0A%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20-1%20%5Cright)%20%5En%5Cfrac%7B1%7D%7Bn%5Es%7D%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20-1%20%5Cright)%20%5Ek%5Cfrac%7B1%7D%7B%5Cleft(%202k%2B1%20%5Cright)%20%5Es%7D%7D%7D%3D-4%5Ceta%20%5Cleft(%20s%20%5Cright)%20%5Cbeta%20%5Cleft(%20s%20%5Cright)%20%0A%0A

于是得到:

%0A%5Csum_%7B%5Cleft(%20n%2Cm%20%5Cright)%20%5Cne%20%5Cleft(%200%2C0%20%5Cright)%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5E%7Bn%2Bm%7D%7D%7B%5Cleft(%20n%5E2%2Bm%5E2%20%5Cright)%20%5Es%7D%7D%3D-4%5Ceta%20%5Cleft(%20s%20%5Cright)%20%5Cbeta%20%5Cleft(%20s%20%5Cright)%20%0A%0A

%0A%5Ceta%20%5Cleft(%20s%20%5Cright)%20%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5E%7Bn-1%7D%7D%7Bn%5Es%7D%7D%3D%5Cleft(%201-2%5E%7B1-s%7D%20%5Cright)%20%5Czeta%20%5Cleft(%20s%20%5Cright)%20%0A%0A;%0A%5Cbeta%20%5Cleft(%20s%20%5Cright)%20%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7B%5Cleft(%202n%2B1%20%5Cright)%20%5Es%7D%7D%0A%0A

另一方面當%0A%5Cmathrm%7BRe%7Ds%3E1%0A%0A

%0A%5Csum_%7B%5Cleft(%20n%2Cm%20%5Cright)%20%5Cne%20%5Cleft(%200%2C0%20%5Cright)%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5E%7Bn%2Bm%7D%7D%7B%5Cleft(%20n%5E2%2Bm%5E2%20%5Cright)%20%5Es%7D%7D%3D%5Csum_%7Bn%3D-%5Cinfty%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20-1%20%5Cright)%20%5En%5Csum_%7Bm%3D-%5Cinfty%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5Em%7D%7B%5Cleft(%20n%5E2%2Bm%5E2%20%5Cright)%20%5Es%7D%7D%7D%0A

%0A%3D%5Csum_%7Bn%3D-%5Cinfty%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20-1%20%5Cright)%20%5En%5Cleft(%202%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5Em%7D%7B%5Cleft(%20n%5E2%2Bm%5E2%20%5Cright)%20%5Es%7D%2B%5Cfrac%7B1%7D%7Bn%5E%7B2s%7D%7D%7D%20%5Cright)%7D%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B4%5Cleft(%20-1%20%5Cright)%20%5E%7Bm%2Bn%7D%7D%7B%5Cleft(%20n%5E2%2Bm%5E2%20%5Cright)%20%5Es%7D%7D%7D%2B2%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn%5E%7B2s%7D%7D%7D%2B2%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5Em%7D%7Bm%5E%7B2s%7D%7D%7D%0A

所以有

%0A%7B%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5E%7Bm%2Bn%7D%7D%7B%5Cleft(%20n%5E2%2Bm%5E2%20%5Cright)%20%5Es%7D%7D%7D%3D%5Ceta%20%5Cleft(%202s%20%5Cright)%20-%5Ceta%20%5Cleft(%20s%20%5Cright)%20%5Cbeta%20%5Cleft(%20s%20%5Cright)%20%7D%0A%0A現(xiàn)在考慮s%3D2

以及圍道積分%0A%5Coint%7B%5Cfrac%7B%5Cpi%20%5Ccsc%20%5Cleft(%20%5Cpi%20z%20%5Cright)%7D%7Bz%5E2%2Bx%5E2%7Ddz%7D%0A%0A,路徑為一無窮大的正方形,不難得到

%0A%5Csum_%7Bm%3D-%5Cinfty%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5Em%7D%7Bm%5E2%2Bx%5E2%7D%7D%3D%5Cfrac%7B%5Cpi%7D%7Bx%5Csinh%20%5Cleft(%20%5Cpi%20x%20%5Cright)%7D%5Cleft(%20x%3E0%20%5Cright)%20%0A%0A

兩邊求導后化解有

%0A%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5Em%7D%7B%5Cleft(%20m%5E2%2Bx%5E2%20%5Cright)%20%5E2%7D%7D%3D%5Cfrac%7B%5Cpi%20%5Cleft(%20%5Cpi%20x%5Ccosh%20%5Cleft(%20%5Cpi%20x%20%5Cright)%20%2B%5Csinh%20%5Cleft(%20%5Cpi%20x%20%5Cright)%20%5Cright)%7D%7B4x%5E3%5Csinh%20%5E2%5Cleft(%20%5Cpi%20x%20%5Cright)%7D-%5Cfrac%7B1%7D%7B2x%5E4%7D%0A

帶入二重級數(shù)

%0A%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Csum_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5E%7Bm%2Bn%7D%7D%7B%5Cleft(%20n%5E2%2Bm%5E2%20%5Cright)%20%5E2%7D%7D%7D%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20-1%20%5Cright)%20%5En%5Cleft(%20%5Cfrac%7B%5Cpi%20%5Cleft(%20%5Cpi%20n%5Ccosh%20%5Cleft(%20%5Cpi%20n%20%5Cright)%20%2B%5Csinh%20%5Cleft(%20%5Cpi%20n%20%5Cright)%20%5Cright)%7D%7B4n%5E3%5Csinh%20%5E2%5Cleft(%20%5Cpi%20n%20%5Cright)%7D-%5Cfrac%7B1%7D%7B2n%5E4%7D%20%5Cright)%7D%0A

%0A%3D%5Cfrac%7B%5Cpi%20%5E2%7D%7B4%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%5Ccosh%20%5Cleft(%20n%5Cpi%20%5Cright)%7D%7Bn%5E2%5Csinh%20%5E2%5Cleft(%20n%5Cpi%20%5Cright)%7D%7D%2B%5Cfrac%7B%5Cpi%7D%7B4%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn%5E3%5Csinh%20%5Cleft(%20n%5Cpi%20%5Cright)%7D%7D%2B%5Cfrac%7B1%7D%7B2%7D%5Ceta%20%5Cleft(%204%20%5Cright)%20%3D%5Ceta%20%5Cleft(%204%20%5Cright)%20-%5Ceta%20%5Cleft(%202%20%5Cright)%20%5Cbeta%20%5Cleft(%202%20%5Cright)%20%0A%0A

化解得到

%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%5Ccosh%20%5Cleft(%20n%5Cpi%20%5Cright)%7D%7Bn%5E2%5Csinh%20%5E2%5Cleft(%20n%5Cpi%20%5Cright)%7D%7D%3D%5Cfrac%7B4%7D%7B%5Cpi%20%5E2%7D%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%5Ceta%20%5Cleft(%204%20%5Cright)%20-%5Ceta%20%5Cleft(%202%20%5Cright)%20%5Cbeta%20%5Cleft(%202%20%5Cright)%20-%5Cfrac%7B%5Cpi%7D%7B4%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn%5E3%5Csinh%20%5Cleft(%20n%5Cpi%20%5Cright)%7D%7D%20%5Cright)%20%0A

下面計算%0A%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn%5E3%5Csinh%20%5Cleft(%20n%5Cpi%20%5Cright)%7D%7D%0A

再次利用上述分式展開有

%0A%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn%5E3%5Csinh%20%5Cleft(%20n%5Cpi%20%5Cright)%7D%7D%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn%5E3%7D%5Cleft(%20%5Cfrac%7B1%7D%7Bn%5Cpi%7D%2B%5Cfrac%7B2%7D%7B%5Cpi%7D%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bn%5Cleft(%20-1%20%5Cright)%20%5Ek%7D%7Bk%5E2%2Bn%5E2%7D%7D%20%5Cright)%7D%3D-%5Cfrac%7B%5Ceta%20%5Cleft(%204%20%5Cright)%7D%7B%5Cpi%7D%2B%5Cfrac%7B2%7D%7B%5Cpi%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5E%7Bn%2Bk%7D%7D%7Bn%5E2%5Cleft(%20k%5E2%2Bn%5E2%20%5Cright)%7D%7D%7D%0A

%0A%3D-%5Cfrac%7B%5Ceta%20%5Cleft(%204%20%5Cright)%7D%7B%5Cpi%7D%2B%5Cfrac%7B2%7D%7B%5Cpi%7D%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5Ek%7D%7Bk%5E2%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20-1%20%5Cright)%20%5En%5Cleft(%20%5Cfrac%7B1%7D%7Bn%5E2%7D-%5Cfrac%7B1%7D%7Bn%5E2%2Bk%5E2%7D%20%5Cright)%7D%7D

%3D-%5Cfrac%7B%5Ceta%20%5Cleft(%204%20%5Cright)%7D%7B%5Cpi%7D%2B%5Cfrac%7B2%7D%7B%5Cpi%7D%5Cleft(%20%5Ceta%20%5E2%5Cleft(%202%20%5Cright)%20-%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D%7B%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5E%7Bn%2Bk%7D%7D%7Bk%5E2%5Cleft(%20n%5E2%2Bk%5E2%20%5Cright)%7D%7D%7D%20%5Cright)%20%0A%0A%0A%3D-%5Cfrac%7B%5Ceta%20%5Cleft(%204%20%5Cright)%7D%7B%5Cpi%7D%2B%5Cfrac%7B%5Ceta%20%5E2%5Cleft(%202%20%5Cright)%7D%7B%5Cpi%7D%0A

%0A%3D-%5Cfrac%7B%5Cpi%20%5E3%7D%7B360%7D%0A

于是最終我們得到

%0A%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%5Ccosh%20%5Cleft(%20n%5Cpi%20%5Cright)%7D%7Bn%5E2%5Csinh%20%5E2%5Cleft(%20n%5Cpi%20%5Cright)%7D%7D%3D%5Cfrac%7B4%7D%7B%5Cpi%20%5E2%7D%5Cleft(%20%5Cfrac%7B7%7D%7B16%7D%5Cfrac%7B%5Cpi%20%5E4%7D%7B90%7D-%5Cfrac%7B%5Cpi%20%5E2%5Cbeta%20%5Cleft(%202%20%5Cright)%7D%7B12%7D%2B%5Cfrac%7B%5Cpi%20%5E4%7D%7B4%5Ctimes%20360%7D%20%5Cright)%20%3D%5Cfrac%7B%5Cpi%20%5E2%7D%7B45%7D-%5Cfrac%7BG%7D%7B3%7D%0A







%0A%0A

一個無窮級數(shù)的評論 (共 條)

分享到微博請遵守國家法律
镇雄县| 陆川县| 行唐县| 丽水市| 怀仁县| 宁津县| 金平| 尉氏县| 龙海市| 当阳市| 罗平县| 准格尔旗| 民权县| 松潘县| 南江县| 墨玉县| 乾安县| 左权县| 博兴县| 黄大仙区| 大宁县| 涡阳县| 越西县| 石门县| 金坛市| 顺平县| 铁岭县| 汝南县| 准格尔旗| 甘泉县| 灵川县| 阳信县| 南澳县| 麟游县| 安义县| 和田县| 侯马市| 平昌县| 新兴县| 杂多县| 兰考县|