最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

復(fù)習(xí)筆記Day115

2023-03-08 01:04 作者:間宮_卓司  | 我要投稿

整套考卷打上去實在太累了,而且有的題目確實沒啥意思,所以我還是恢復(fù)到之前只寫一些個人認(rèn)為比較有意思的題目上去的狀態(tài)

115.1?[蘇州大學(xué)2023]?n階復(fù)方陣A稱為對合矩陣,若A%5E2%3DE_n

(1)證明:任意一個對合矩陣都可以相似對角化

(2)證明:兩兩可交換的n階對合矩陣最多有2%5En

(1)記f%5Cleft(%20%5Clambda%20%5Cright)%20%3D%5Clambda%20%5E2-1,那么因為f%5Cleft(%20%5Clambda%20%5Cright)%20%3D%5Cleft(%20%5Clambda%20-1%20%5Cright)%20%5Cleft(%20%5Clambda%20%2B1%20%5Cright)%20只有單根,故A的極小多項式也只有單根,從而A可以相似對角化

(2)容易發(fā)現(xiàn)%5Cleft%5C%7B%20%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%20c_1%2Cc_2%2C%5Ccdots%20%2Cc_n%20%5Cright%5C%7D%20%3Ac_i%3D%5Cpm%201%2Ci%3D1%2C2%2C%5Ccdots%20%2Cn%20%5Cright%5C%7D%20是一個滿足條件的集合,并且不能再向里面添加元素了,下面來嚴(yán)格證明一下

設(shè)B是兩兩可交換n階對合矩陣構(gòu)成的集合中元素最多的集合之一

C為兩兩可交換n階對合矩陣構(gòu)成的集合,那么C%5Ccup%20%5Cleft%5C%7B%20E_n%20%5Cright%5C%7D%20也是兩兩可交換n階對合矩陣構(gòu)成的集合,所以E_n%5Cin%20B

其次,B中的元素的個數(shù)和P%5E%7B-1%7DBP%3D%5Cleft%5C%7B%20P%5E%7B-1%7DAP%3AA%5Cin%20B%20%5Cright%5C%7D%20中的元素的個數(shù)是一樣的,因為A可對角化且特征值僅為%5Cpm%201,所以不妨設(shè)%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%201%2C1%2C%5Ccdots%20%2C1%2C-1%2C%5Ccdots%20%2C-1%20%5Cright%5C%7D%20%5Cin%20B,其中1的個數(shù)為x個,-1的個數(shù)為y

當(dāng)n%3D1時,結(jié)論顯然

假設(shè)當(dāng)k%3C%20n時結(jié)論成立,即兩兩可交換的k階對合矩陣最多有2%5Ek個,那么任取A%3D(a_%7Bij%7D)_%7Bn%5Ctimes%20n%7D,有

%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%201%2C1%2C%5Ccdots%20%2C1%2C-1%2C%5Ccdots%20%2C-1%20%5Cright%5C%7D%20A%3DA%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%201%2C1%2C%5Ccdots%20%2C1%2C-1%2C%5Ccdots%20%2C-1%20%5Cright%5C%7D%20

A%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_1%26%09%09A_2%5C%5C%0A%09A_3%26%09%09A_4%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20,其中A_1x%5Ctimes%20x階矩陣,A_4y%5Ctimes%20y階矩陣,那么

%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09E_x%26%09%09%5C%5C%0A%09%26%09%09-E_y%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_1%26%09%09A_2%5C%5C%0A%09A_3%26%09%09A_4%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_1%26%09%09A_2%5C%5C%0A%09A_3%26%09%09A_4%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09E_x%26%09%09%5C%5C%0A%09%26%09%09-E_y%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20

化簡,得

%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_1%26%09%09A_2%5C%5C%0A%09-A_3%26%09%09-A_4%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_1%26%09%09-A_2%5C%5C%0A%09A_3%26%09%09-A_4%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20

從而A_2%3DA_3%3D0,即B中矩陣只能有A%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_1%26%09%09%5C%5C%0A%09%26%09%09A_4%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20的形式,又因為A%5E2%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_1%26%09%09%5C%5C%0A%09%26%09%09A_4%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_%7B1%7D%5E%7B2%7D%26%09%09%5C%5C%0A%09%26%09%09A_%7B4%7D%5E%7B2%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%3DE_n,所以A_1%2CA_4也是對合矩陣,依歸納假設(shè),這樣的A_1最多有2%5Ex個,這樣的A_4最多有2%5Ey個,合起來這樣的A一共有2%5En個,又因為E_x-E_y也包含在其中,所以B中的元素最多有2%5En

115.2 [南開大學(xué)2023]設(shè)AA%5Cin%20%5Cmathbb%7BR%7D%20%5E%7Bn%5Ctimes%20n%7D是正定矩陣,%5Cbeta%20%5Cin%20%5Cmathbb%7BR%7D%20%5En%2Cc%5Cin%20%5Cmathbb%7BR%7D%20。如果存在x%5Cin%20%5Cmathbb%7BR%7D%20%5En,使得x%5ETAx%2B2%5Cbeta%20%5ETx%2Bc%3D0,證明:%5Cbeta%20%5ETA%5E%7B-1%7D%5Cbeta%20%5Cge%20c

如果n%3D1,那么這個結(jié)論就是熟悉的一元二次方程的判別式,現(xiàn)在先來回憶一下這個判別式是怎么推導(dǎo)出來的

%5Cbegin%7Baligned%7D%0A%09%26ax%5E2%2B2bx%2Bc%5C%5C%0A%09%26%3Da%5Cleft(%20x%2B%5Cfrac%7Bb%7D%7Ba%7D%20%5Cright)%20%5E2-%5Cfrac%7Bb%7D%7Ba%7D%5E2%5C%5C%0A%09%26%3Da%5Cleft(%20x%2B%5Cfrac%7Bb%7D%7Ba%7D%20%5Cright)%20%5E2%2Bc-%5Cfrac%7Bb%5E2%7D%7Ba%7D%5C%5C%0A%5Cend%7Baligned%7D

所以只能有c-%5Cfrac%7Bb%5E2%7D%7Ba%7D%3C0

根據(jù)要證明的結(jié)論,合理地猜想,對于一般的情況,有下式成立

%5Cbegin%7Baligned%7D%0A%09%26x%5ETAx%2B2%5Cbeta%20%5ETx%2Bc%5C%5C%0A%09%26%3D%5Cleft(%20x%5ET%2B%5Cbeta%20%5ETA%5E%7B-1%7D%20%5Cright)%20A%5Cleft(%20x%2BA%5E%7B-1%7D%5Cbeta%20%5Cright)%20%2Bc-%5Cbeta%20%5ETA%5E%7B-1%7D%5Cbeta%20%5C%0A%5Cend%7Baligned%7D

下面來驗證一下

%5Cbegin%7Baligned%7D%0A%09%26%5Cleft(%20x%5ET%2B%5Cbeta%20%5ETA%5E%7B-1%7D%20%5Cright)%20A%5Cleft(%20x%2BA%5E%7B-1%7D%5Cbeta%20%5Cright)%20%2Bc-%5Cbeta%20%5ETA%5E%7B-1%7D%5Cbeta%5C%5C%0A%09%26%3Dx%5ETAx%2Bx%5ET%5Cbeta%20%2B%5Cbeta%20%5ETx%2B%5Cbeta%20%5ETA%5E%7B-1%7D%5Cbeta%20%2Bc-%5Cbeta%20%5ETA%5E%7B-1%7D%5Cbeta%5C%5C%0A%09%26%3Dx%5ETAx%2B2%5Cbeta%20%5ETx%2Bc%5C%5C%0A%5Cend%7Baligned%7D

所以這確實是成立的,故

%5Cleft(%20x%5ET%2B%5Cbeta%20%5ETA%5E%7B-1%7D%20%5Cright)%20A%5Cleft(%20x%2B%5Cbeta%20A%5E%7B-1%7D%20%5Cright)%20%3D%5Cbeta%20%5ETA%5E%7B-1%7D%5Cbeta%20-c%5Cge%200

結(jié)論得證

115.3 [南開大學(xué)2023]是否存在矩陣A%5Cin%20%5Cmathbb%7BQ%7D%20%5E%7B2%5Ctimes%202%7D,使得A%5E6%3DE%2CA%5E3%5Cne%20E%2CA%5E2%5Cne%20E,且A中所有元素之和為2023?如果存在,請給出具體的例子,如果不存在,請說明理由

A%5E3%3DB,則B是對合矩陣,B可對角化且其只能以1-1為特征值,又因為B%5Cne%20E,所以其相似于%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%201%2C-1%20%5Cright%5C%7D%20%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%20-1%2C-1%20%5Cright%5C%7D%20

若其相似于%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%201%2C-1%20%5Cright%5C%7D%20,則因為方程%5Clambda%20%5E3%3D1的解為%5Clambda%20%3De%5E%7B%5Cfrac%7B2%5Cpi%20i%7D%7B3%7D%7D%2Ce%5E%7B%5Cfrac%7B4%5Cpi%20i%7D%7B3%7D%7D%2C1,%5Clambda%20%5E3%2B1%3D0的解為%5Clambda%20%3De%5E%7B%5Cfrac%7B%5Cpi%20i%7D%7B3%7D%7D%2C-1%2Ce%5E%7B%5Cfrac%7B5%5Cpi%20i%7D%7B3%7D%7D,所以A%5Clambda%20%3D%5Cleft%5C%7B%20e%5E%7B%5Cfrac%7B2%5Cpi%20i%7D%7B3%7D%7D%2Ce%5E%7B%5Cfrac%7B4%5Cpi%20i%7D%7B3%7D%7D%2C1%20%5Cright%5C%7D%20中的一個元素為一個特征值,以%5Cleft%5C%7B%20e%5E%7B%5Cfrac%7B%5Cpi%20i%7D%7B3%7D%7D%2C-1%2Ce%5E%7B%5Cfrac%7B5%5Cpi%20i%7D%7B3%7D%7D%20%5Cright%5C%7D%20中的一個元素為另一個特征值,因為A是有理數(shù)域上的矩陣,所以其復(fù)根只能是共軛的,所以A的特征值只能是%5Clambda%3D%5Cpm1,但是此時A%5E2%3DE,矛盾

同理可知,B相似于%5Cmathrm%7Bdiag%7D%5Cleft%5C%7B%20-1%2C-1%20%5Cright%5C%7D%20時,A的特征值只能為%5Clambda%20_1%3De%5E%7B%5Cfrac%7B%5Cpi%20i%7D%7B3%7D%7D%2C%5Clambda%20_2%3De%5E%7B%5Cfrac%7B5%5Cpi%20i%7D%7B3%7D%7D

此時,A相似于%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%090%26%09%09-1%5C%5C%0A%091%26%09%091%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20

草稿紙上算的時候以為做出來了,結(jié)果寫到這里發(fā)現(xiàn)不會了,不過整題刪了又怪可惜的,等想出來了再補(bǔ)上吧,有做出來的大哥教教我吧···


復(fù)習(xí)筆記Day115的評論 (共 條)

分享到微博請遵守國家法律
顺平县| 那曲县| 白朗县| 海阳市| 陕西省| 渭源县| 昆山市| 晋江市| 鄱阳县| 梅州市| 昭苏县| 白朗县| 长治市| 定边县| 淮南市| 海门市| 平顺县| 许昌县| 巴彦县| 类乌齐县| 淮安市| 灵武市| 凯里市| 江阴市| 巴马| 醴陵市| 绥芬河市| 东安县| 大渡口区| 新宁县| 保康县| 绥中县| 石景山区| 朝阳区| 江源县| 舟山市| 福安市| 汉中市| 柘城县| 马关县| 阳城县|