CVPR2020論文分方向整理之檢測篇(代碼/論文解讀/136篇打包下載)
本次分享的是所有CVPR2020檢測類論文,并將它們細(xì)分為3D目標(biāo)檢測、人臉檢測、動作檢測、視頻目標(biāo)檢測、文本檢測、行人檢測等方向。
3D目標(biāo)檢測
【1】Learning Deep Network for Detecting 3D Object Keypoints and 6D Poses
作者:Wanqing Zhao, Shaobo Zhang, Ziyu Guan, Wei Zhao, Jinye Peng, Jianping Fan
【2】DOPS: Learning to Detect 3D Objects and Predict Their 3D Shapes
作者:Mahyar Najibi, Guangda Lai, Abhijit Kundu, Zhichao Lu, Vivek Rathod, Thomas Funkhouser, Caroline Pantofaru, David Ross, Larry S. Davis, Alireza Fathi
【3】Train in Germany, Test in the USA: Making 3D Object Detectors Generalize
作者:Yan Wang, Xiangyu Chen, Yurong You, Li Erran Li, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger, Wei-Lun Chao
代碼:https://github.com/cxy1997/3D_adapt_auto_driving
【4】3DSSD: Point-Based 3D Single Stage Object Detector
作者:Zetong Yang, Yanan Sun, Shu Liu, Jiaya Jia
代碼:https://github.com/tomztyang/3DSSD

本文主要從point-based的研究入手,考慮如何解決掉以前的point-based的方法的瓶頸,即時間和內(nèi)存占有遠(yuǎn)遠(yuǎn)大于voxel-based的方法,從而作者設(shè)計了新的SA模塊和丟棄了FP模塊到達時間上可達25FPS,此外本文采用一個anchor free Head,進一步減少時間和GPU顯存,提出了3D center-ness label的表示,進一步提高了精度。
【5】FroDO: From Detections to 3D Objects
作者:Martin Runz, Kejie Li, Meng Tang, Lingni Ma, Chen Kong, Tanner Schmidt, Ian Reid, Lourdes Agapito, Julian Straub, Steven Lovegrove, Richard Newcombe
【6】Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection
作者:Liang Du, Xiaoqing Ye, Xiao Tan, Jianfeng Feng, Zhenbo Xu, Errui Ding, Shilei Wen
【7】IDA-3D: Instance-Depth-Aware 3D Object Detection From Stereo Vision for Autonomous Driving
作者:Wanli Peng, Hao Pan, He Liu, Yi Sun
【8】DSGN: Deep Stereo Geometry Network for 3D Object Detection
作者:Yilun Chen, Shu Liu, Xiaoyong Shen, Jiaya Jia
代碼:https://github.com/chenyilun95/DSGN
【9】DR Loss: Improving Object Detection by Distributional Ranking
作者:Qi Qian, Lei Chen, Hao Li, Rong Jin
【10】MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships
作者:Yongjian Chen, Lei Tai, Kai Sun, Mingyang Li
【11】Structure Aware Single-Stage 3D Object Detection From Point Cloud
作者:Chenhang He, Hui Zeng, Jianqiang Huang, Xian-Sheng Hua, Lei Zhang
【12】Learning Depth-Guided Convolutions for Monocular 3D Object Detection
作者:Mingyu Ding, Yuqi Huo, Hongwei Yi, Zhe Wang, Jianping Shi, Zhiwu Lu, Ping Luo
【13】LiDAR-Based Online 3D Video Object Detection With Graph-Based Message Passing and Spatiotemporal Transformer Attention
作者:Junbo Yin, Jianbing Shen, Chenye Guan, Dingfu Zhou, Ruigang Yang
【14】SESS: Self-Ensembling Semi-Supervised 3D Object Detection作者:Na Zhao, Tat-Seng Chua, Gim Hee Lee
【15】What You See is What You Get: Exploiting Visibility for 3D Object Detection
作者:Peiyun Hu, Jason Ziglar, David Held, Deva Ramanan
【16】Density-Based Clustering for 3D Object Detection in Point Clouds
作者:Syeda Mariam Ahmed, Chee Meng Chew
【17】Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation
作者:Jiaming Sun, Linghao Chen, Yiming Xie, Siyu Zhang, Qinhong Jiang, Xiaowei Zhou, Hujun Bao
代碼:https://github.com/zju3dv/disprcn
【18】PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
作者:Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, Hongsheng Li
代碼:https://github.com/sshaoshuai/PV-RCNN
【19】MLCVNet: Multi-Level Context VoteNet for 3D Object Detection
作者:Qian Xie, Yu-Kun Lai, Jing Wu, Zhoutao Wang, Yiming Zhang, Kai Xu, Jun Wang
代碼:https://github.com/NUAAXQ/MLCVNet
【20】A Hierarchical Graph Network for 3D Object Detection on Point Clouds
作者:Jintai Chen, Biwen Lei, Qingyu Song, Haochao Ying, Danny Z. Chen, Jian Wu
【21】HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection
作者:Maosheng Ye, Shuangjie Xu, Tongyi Cao

3D目標(biāo)檢測是當(dāng)前自動駕駛感知模塊重要的一個環(huán)節(jié),如何平衡3D物體檢測的精度以及速度更是非常重要的一個研究話題。本文提出了一種新的基于點云的三維物體檢測的統(tǒng)一網(wǎng)絡(luò):混合體素網(wǎng)絡(luò)(HVNet),通過在點級別上混合尺度體素特征編碼器(VFE)得到更好的體素特征編碼方法,從而在速度和精度上得到提升。與多種方法相比,HVNet在檢測速度上有明顯的提高。在KITTI 數(shù)據(jù)集自行車檢測的中等難度級別(moderate)中,HVNet 的準(zhǔn)確率比PointPillars方法高出了8.44%。
【22】Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
作者:Weijing Shi, Raj Rajkumar
代碼:https://github.com/WeijingShi/Point-GNN
【23】Joint 3D Instance Segmentation and Object Detection for Autonomous Driving
作者:Dingfu Zhou, Jin Fang, Xibin Song, Liu Liu, Junbo Yin, Yuchao Dai, Hongdong Li, Ruigang Yang
【24】FocalMix: Semi-Supervised Learning for 3D Medical Image Detection
作者:Dong Wang, Yuan Zhang, Kexin Zhang, Liwei Wang
【25】ImVoteNet: Boosting 3D Object Detection in Point Clouds With Image Votes作者:Charles R. Qi, Xinlei Chen, Or Litany, Leonidas J. Guibas
【26】PointPainting: Sequential Fusion for 3D Object Detection
作者:Sourabh Vora, Alex H. Lang, Bassam Helou, Oscar Beijbom
【27】End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection
作者:Rui Qian, Divyansh Garg, Yan Wang, Yurong You, Serge Belongie, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger, Wei-Lun Chao
代碼:https://github.com/mileyan/pseudo-LiDAR_e2e
人物(交互)檢測
【28】Learning Human-Object Interaction Detection Using Interaction Points
作者:Tiancai Wang, Tong Yang, Martin Danelljan, Fahad Shahbaz Khan, Xiangyu Zhang, Jian Sun
【29】PPDM: Parallel Point Detection and Matching for Real-Time Human-Object Interaction Detection
作者:Yue Liao, Si Liu, Fei Wang, Yanjie Chen, Chen Qian, Jiashi Feng
代碼:https://github.com/YueLiao/PPDM
【30】(人物檢測)Learning to Detect Important People in Unlabelled Images for Semi-Supervised Important People Detection
作者:Fa-Ting Hong, Wei-Hong Li, Wei-Shi Zheng
【31】(人體檢測)VSGNet: Spatial Attention Network for Detecting Human Object Interactions Using Graph Convolutions
作者:Oytun Ulutan, A S M Iftekhar, B. S. Manjunath
動作檢測
【32】Combining Detection and Tracking for Human Pose Estimation in Videos
作者:Manchen Wang, Joseph Tighe, Davide Modolo
【33】G-TAD: Sub-Graph Localization for Temporal Action Detection
作者:Mengmeng Xu, Chen Zhao, David S. Rojas, Ali Thabet, Bernard Ghanem
【34】Learning to Discriminate Information for Online Action Detection
作者:Hyunjun Eun, Jinyoung Moon, Jongyoul Park, Chanho Jung, Changick Kim
活體檢測
【35】ZSTAD: Zero-Shot Temporal Activity Detection
作者:Lingling Zhang, Xiaojun Chang, Jun Liu, Minnan Luo, Sen Wang, Zongyuan Ge, Alexander Hauptmann
顯著性檢測
【36】Learning Selective Self-Mutual Attention for RGB-D Saliency Detection
作者:Nian Liu, Ni Zhang, Junwei Han
【37】Label Decoupling Framework for Salient Object Detection
作者:Jun Wei, Shuhui Wang, Zhe Wu, Chi Su, Qingming Huang, Qi Tian
【38】Weakly-Supervised Salient Object Detection via Scribble Annotations
作者:Jing Zhang, Xin Yu, Aixuan Li, Peipei Song, Bowen Liu, Yuchao Dai
【39】UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders
作者:Jing Zhang, Deng-Ping Fan, Yuchao Dai, Saeed Anwar, Fatemeh Sadat Saleh, Tong Zhang, Nick Barnes
代碼:https://github.com/JingZhang617/UCNet
【40】Adaptive Graph Convolutional Network With Attention Graph Clustering for Co-Saliency Detection
作者:Kaihua Zhang, Tengpeng Li, Shiwen Shen, Bo Liu, Jin Chen, Qingshan Liu
【41】A2dele: Adaptive and Attentive Depth Distiller for Efficient RGB-D Salient Object Detection
作者:Yongri Piao, Zhengkun Rong, Miao Zhang, Weisong Ren, Huchuan Lu
【42】Interactive Two-Stream Decoder for Accurate and Fast Saliency Detection
作者:Huajun Zhou, Xiaohua Xie, Jian-Huang Lai, Zixuan Chen, Lingxiao Yang
【43】Multi-Scale Interactive Network for Salient Object Detection
作者:Youwei Pang, Xiaoqi Zhao, Lihe Zhang, Huchuan Lu
【44】Taking a Deeper Look at Co-Salient Object Detection
作者:Deng-Ping Fan, Zheng Lin, Ge-Peng Ji, Dingwen Zhang, Huazhu Fu, Ming-Ming Cheng
【45】JL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detection
作者:Keren Fu, Deng-Ping Fan, Ge-Peng Ji, Qijun Zhao
代碼:https://github.com/kerenfu/JLDCF/
【46】Select, Supplement and Focus for RGB-D Saliency Detection
作者:Miao Zhang, Weisong Ren, Yongri Piao, Zhengkun Rong, Huchuan Lu
偽裝/偽造檢測
【47】Camouflaged Object Detection
作者:Deng-Ping Fan, Ge-Peng Ji, Guolei Sun, Ming-Ming Cheng, Jianbing Shen, Ling Shao
【48】DOA-GAN: Dual-Order Attentive Generative Adversarial Network for Image Copy-Move Forgery Detection and Localization
作者:Ashraful Islam, Chengjiang Long, Arslan Basharat, Anthony Hoogs
【49】Advancing High Fidelity Identity Swapping for Forgery Detection
作者:Lingzhi Li, Jianmin Bao, Hao Yang, Dong Chen, Fang Wen
【50】Advancing High Fidelity Identity Swapping for Forgery Detection
作者:Lingzhi Li, Jianmin Bao, Hao Yang, Dong Chen, Fang Wen
人臉檢測
【51】Cross-Domain Face Presentation Attack Detection via Multi-Domain Disentangled Representation Learning
作者:Guoqing Wang, Hu Han, Shiguang Shan, Xilin Chen
【52】HAMBox: Delving Into Mining High-Quality Anchors on Face Detection
作者:Yang Liu, Xu Tang, Junyu Han, Jingtuo Liu, Dinger Rui, Xiang Wu
【53】BFBox: Searching Face-Appropriate Backbone and Feature Pyramid Network for Face Detector
作者:Yang Liu, Xu Tang
【54】Global Texture Enhancement for Fake Face Detection in the Wild
作者:Zhengzhe Liu, Xiaojuan Qi, Philip H.S. Torr
【55】(數(shù)據(jù)集)DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face Forgery Detection
作者:Liming Jiang, Ren Li, Wayne Wu, Chen Qian, Chen Change Loy
【56】Face X-Ray for More General Face Forgery Detection
作者:Lingzhi Li, Jianmin Bao, Ting Zhang, Hao Yang, Dong Chen, Fang Wen, Baining Guo
【57】On the Detection of Digital Face Manipulation
作者:Hao Dang, Feng Liu, Joel Stehouwer, Xiaoming Liu, Anil K. Jain
【58】Attention-Driven Cropping for Very High Resolution Facial Landmark Detection
作者:Prashanth Chandran, Derek Bradley, Markus Gross, Thabo Beeler
小樣本/零樣本
【59】Few-Shot Object Detection With Attention-RPN and Multi-Relation Detector
作者:Qi Fan, Wei Zhuo, Chi-Keung Tang, Yu-Wing Tai

本文提出了新的少樣本目標(biāo)檢測算法,創(chuàng)新點包括Attention-RPN、多關(guān)系檢測器以及對比訓(xùn)練策略,另外還構(gòu)建了包含1000類的少樣本檢測數(shù)據(jù)集FSOD,在FSOD上訓(xùn)練得到的論文模型能夠直接遷移到新類別的檢測中,不需要fine-tune。
【60】Incremental Few-Shot Object Detection
作者:Juan-Manuel Perez-Rua, Xiatian Zhu, Timothy M. Hospedales, Tao Xiang
【61】Don't Even Look Once: Synthesizing Features for Zero-Shot Detection
作者:Pengkai Zhu, Hanxiao Wang, Venkatesh Saligrama
異常檢測
【62】Uninformed Students: Student-Teacher Anomaly Detection With Discriminative Latent Embeddings
作者:Paul Bergmann, Michael Fauser, David Sattlegger, Carsten Steger
【63】Graph Embedded Pose Clustering for Anomaly Detection
作者:Amir Markovitz, Gilad Sharir, Itamar Friedman, Lihi Zelnik-Manor, Shai Avidan
【64】Self-Trained Deep Ordinal Regression for End-to-End Video Anomaly Detection
作者:Guansong Pang, Cheng Yan, Chunhua Shen, Anton van den Hengel, Xiao Bai
【65】Learning Memory-Guided Normality for Anomaly Detection
作者:Hyunjong Park, Jongyoun Noh, Bumsub Ham
半監(jiān)督/弱監(jiān)督/無監(jiān)督
【66】DUNIT: Detection-Based Unsupervised Image-to-Image Translation
作者:Deblina Bhattacharjee, Seungryong Kim, Guillaume Vizier, Mathieu Salzmann
【67】A Multi-Task Mean Teacher for Semi-Supervised Shadow Detection
作者:Zhihao Chen, Lei Zhu, Liang Wan, Song Wang, Wei Feng, Pheng-Ann Heng
【68】Instance-Aware, Context-Focused, and Memory-Efficient Weakly Supervised Object Detection
作者:Zhongzheng Ren, Zhiding Yu, Xiaodong Yang, Ming-Yu Liu, Yong Jae Lee, Alexander G. Schwing, Jan Kautz
代碼:https://github.com/NVlabs/wetectron
【69】SLV: Spatial Likelihood Voting for Weakly Supervised Object Detection
作者:Ze Chen, Zhihang Fu, Rongxin Jiang, Yaowu Chen, Xian-Sheng Hua
密集檢測
【70】D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
作者:Xuyang Bai, Zixin Luo, Lei Zhou, Hongbo Fu, Long Quan, Chiew-Lan Tai
【71】Real-Time Panoptic Segmentation From Dense Detections
作者:Rui Hou, Jie Li, Arjun Bhargava, Allan Raventos, Vitor Guizilini, Chao Fang, Jerome Lynch, Adrien Gaidon
文本檢測
【72】Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection
作者:Shi-Xue Zhang, Xiaobin Zhu, Jie-Bo Hou, Chang Liu, Chun Yang, Hongfa Wang, Xu-Cheng Yin
【73】ContourNet: Taking a Further Step Toward Accurate Arbitrary-Shaped Scene Text Detection
作者:Yuxin Wang, Hongtao Xie, Zheng-Jun Zha, Mengting Xing, Zilong Fu, Yongdong Zhang
視頻目標(biāo)檢測
【74】Memory Enhanced Global-Local Aggregation for Video Object Detection
作者:Yihong Chen, Yue Cao, Han Hu, Liwei Wang
【75】Beyond Short-Term Snippet: Video Relation Detection With Spatio-Temporal Global Context
作者:Chenchen Liu, Yang Jin, Kehan Xu, Guoqiang Gong, Yadong Mu
【76】Detecting Attended Visual Targets in Video
作者:Eunji Chong, Yongxin Wang, Nataniel Ruiz, James M. Rehg
【77】LiDAR-Based Online 3D Video Object Detection With Graph-Based Message Passing and Spatiotemporal Transformer Attention
作者:Junbo Yin, Jianbing Shen, Chenye Guan, Dingfu Zhou, Ruigang Yang
代碼:https://github.com/yinjunbo/3DVID
【78】Combining Detection and Tracking for Human Pose Estimation in Videos
作者:Manchen Wang, Joseph Tighe, Davide Modolo
行人檢測
【79】STINet: Spatio-Temporal-Interactive Network for Pedestrian Detection and Trajectory Prediction
作者:Zhishuai Zhang, Jiyang Gao, Junhua Mao, Yukai Liu, Dragomir Anguelov, Congcong Li
【80】Temporal-Context Enhanced Detection of Heavily Occluded Pedestrians
作者:Jialian Wu, Chunluan Zhou, Ming Yang, Qian Zhang, yuan Li, Junsong Yuan
【81】Where, What, Whether: Multi-Modal Learning Meets Pedestrian Detection
作者:Yan Luo, Chongyang Zhang, Muming Zhao, Hao Zhou, Jun Sun
【82】NMS by Representative Region: Towards Crowded Pedestrian Detection by Proposal Pairing
作者:Xin Huang, Zheng Ge, Zequn Jie, Osamu Yoshie
移動目標(biāo)檢測
【83】MnasFPN: Learning Latency-Aware Pyramid Architecture for Object Detection on Mobile Devices
作者:Bo Chen, Golnaz Ghiasi, Hanxiao Liu, Tsung-Yi Lin, Dmitry Kalenichenko, Hartwig Adam, Quoc V. Le
通用目標(biāo)檢測/其他
【84】(anchor-free)Bridging the Gap Between Anchor-Based and Anchor-Free Detection via Adaptive Training Sample Selection
作者:Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, Stan Z. Li
代碼:https://github.com/sfzhang15/ATSS

本文指出one-stage anchor-based和center-based anchor-free檢測算法間的差異主要來自于正負(fù)樣本的選擇,基于此提出ATSS(Adaptive Training Sample Selection)方法,該方法能夠自動根據(jù)GT的相關(guān)統(tǒng)計特征選擇合適的anchor box作為正樣本,在不帶來額外計算量和參數(shù)的情況下,能夠大幅提升模型的性能。
【85】(大規(guī)模/不均衡目標(biāo)檢測)Large-Scale Object Detection in the Wild From Imbalanced Multi-Labels
作者:Junran Peng, Xingyuan Bu, Ming Sun, Zhaoxiang Zhang, Tieniu Tan, Junjie Yan
【86】DLWL: Improving Detection for Lowshot Classes With Weakly Labelled Data
作者:Vignesh Ramanathan, Rui Wang, Dhruv Mahajan
【87】Correlation-Guided Attention for Corner Detection Based Visual Tracking
作者:Fei Du, Peng Liu, Wei Zhao, Xianglong Tang
【88】(特征檢測)Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task
作者:Aritra Bhowmik, Stefan Gumhold, Carsten Rother, Eric Brachmann
【89】Seeing Around Street Corners: Non-Line-of-Sight Detection and Tracking In-the-Wild Using Doppler Radar
作者:Nicolas Scheiner, Florian Kraus, Fangyin Wei, Buu Phan, Fahim Mannan, Nils Appenrodt, Werner Ritter, Jurgen Dickmann, Klaus Dietmayer, Bernhard Sick, Felix Heide
【90】Learning to Observe: Approximating Human Perceptual Thresholds for Detection of Suprathreshold Image Transformations
作者:Alan Dolhasz, Carlo Harvey, Ian Williams
【91】Siam R-CNN: Visual Tracking by Re-Detection
作者:Paul Voigtlaender, Jonathon Luiten, Philip H.S. Torr, Bastian Leibe
【92】Progressive Mirror Detection
作者:Jiaying Lin, Guodong Wang, Rynson W.H. Lau
【93】(陰影檢測)Instance Shadow Detection
作者:Tianyu Wang, Xiaowei Hu, Qiong Wang, Pheng-Ann Heng, Chi-Wing Fu
【94】(陰影檢測)A Multi-Task Mean Teacher for Semi-Supervised Shadow Detection
作者:Zhihao Chen, Lei Zhu, Liang Wan, Song Wang, Wei Feng, Pheng-Ann Heng
【95】(玻璃檢測)Don't Hit Me! Glass Detection in Real-World Scenes
作者:Haiyang Mei, Xin Yang, Yang Wang, Yuanyuan Liu, Shengfeng He, Qiang Zhang, Xiaopeng Wei, Rynson W.H. Lau
【96】Rethinking Classification and Localization for Object Detection
作者:Yue Wu, Yinpeng Chen, Lu Yuan, Zicheng Liu, Lijuan Wang, Hongzhi Li, Yun Fu
【97】(多anchor)Multiple Anchor Learning for Visual Object Detection
作者:Wei Ke, Tianliang Zhang, Zeyi Huang, Qixiang Ye, Jianzhuang Liu, Dong Huang
【98】Memory Enhanced Global-Local Aggregation for Video Object Detection
作者:Yihong Chen, Yue Cao, Han Hu, Liwei Wang 代碼:https://github.com/Scalsol/mega.pytorch
【99】CentripetalNet: Pursuing High-Quality Keypoint Pairs for Object Detection
作者:Zhiwei Dong, Guoxuan Li, Yue Liao, Fei Wang, Pengju Ren, Chen Qian
代碼:https://github.com/KiveeDong/CentripetalNet

本文提出一種使用向心偏移來對同一實例中的角點進行配對的CentripetalNet向心網(wǎng)絡(luò)。向心網(wǎng)絡(luò)可以預(yù)測角點的位置和向心偏移,并匹配移動結(jié)果對齊的角。結(jié)合位置信息,這種方法比傳統(tǒng)的嵌入方法更準(zhǔn)確地匹配角點。角池將邊界框內(nèi)的信息提取到邊界上。為了使這些信息在角落里更容易被察覺,作者又設(shè)計了一個交叉星可變形卷積網(wǎng)絡(luò)來適應(yīng)特征。除了檢測,通過為作者的CentripetalNet安置一個mask預(yù)測模塊來探索anchor-free檢測器上的實例分割。
【100】(one-stage)Learning From Noisy Anchors for One-Stage Object Detection作者:Hengduo Li, Zuxuan Wu, Chen Zhu, Caiming Xiong, Richard Socher, Larry S. Davis
【101】EfficientDet: Scalable and Efficient Object Detection
作者:Mingxing Tan, Ruoming Pang, Quoc V. Le
代碼:https://github.com/google/automl/tree/master/efficientdet

本文系統(tǒng)性地研究了多種檢測器架構(gòu)設(shè)計,試圖解決該問題?;趩坞A段檢測器范式,研究者查看了主干網(wǎng)絡(luò)、特征融合和邊界框/類別預(yù)測網(wǎng)絡(luò)的設(shè)計選擇,發(fā)現(xiàn)了兩大主要挑戰(zhàn):高效的多尺度特征融合和模型縮放。針對這兩項挑戰(zhàn),研究者提出了應(yīng)對方法:高效的多尺度特征融合和模型縮放。
【102】Overcoming Classifier Imbalance for Long-Tail Object Detection With Balanced Group Softmax
作者:Yu Li, Tao Wang, Bingyi Kang, Sheng Tang, Chunfeng Wang, Jintao Li, Jiashi Feng
【103】Dynamic Refinement Network for Oriented and Densely Packed Object Detection
作者:Xingjia Pan, Yuqiang Ren, Kekai Sheng, Weiming Dong, Haolei Yuan, Xiaowei Guo, Chongyang Ma, Changsheng Xu
代碼:https://github.com/Anymake/DRN_CVPR2020
【104】Noise-Aware Fully Webly Supervised Object Detection
作者:Yunhang Shen, Rongrong Ji, Zhiwei Chen, Xiaopeng Hong, Feng Zheng, Jianzhuang Liu, Mingliang Xu, Qi Tian
【105】Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection
作者:Jianyuan Guo, Kai Han, Yunhe Wang, Chao Zhang, Zhaohui Yang, Han Wu, Xinghao Chen, Chang Xu
代碼:https://github.com/ggjy/HitDet.pytorch
【106】D2Det: Towards High Quality Object Detection and Instance Segmentation
作者:Jiale Cao, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan, Yanwei Pang, Ling Shao
代碼:https://github.com/JialeCao001/D2Det
【107】Prime Sample Attention in Object Detection
作者:Yuhang Cao, Kai Chen, Chen Change Loy, Dahua Lin
【108】Exploring Categorical Regularization for Domain Adaptive Object Detection
作者:Chang-Dong Xu, Xing-Ran Zhao, Xin Jin, Xiu-Shen Wei
【109】SP-NAS: Serial-to-Parallel Backbone Search for Object Detection
作者:Chenhan Jiang, Hang Xu, Wei Zhang, Xiaodan Liang, Zhenguo Li
【110】NAS-FCOS: Fast Neural Architecture Search for Object Detection
作者:Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian, Chunhua Shen, Yanning Zhang
【111】Detection in Crowded Scenes: One Proposal, Multiple Predictions
作者:Xuangeng Chu, Anlin Zheng, Xiangyu Zhang, Jian Sun
代碼:https://github.com/megvii-model/CrowdDetection
【112】Cross-Domain Detection via Graph-Induced Prototype Alignment
作者:Minghao Xu, Hang Wang, Bingbing Ni, Qi Tian, Wenjun Zhang
【113】AugFPN: Improving Multi-Scale Feature Learning for Object Detection作者:Chaoxu Guo, Bin Fan, Qian Zhang, Shiming Xiang, Chunhong Pan
【114】Robust Object Detection Under Occlusion With Context-Aware CompositionalNets
作者:Angtian Wang, Yihong Sun, Adam Kortylewski, Alan L. Yuille
【115】(跨域目標(biāo)檢測)Cross-Domain Document Object Detection: Benchmark Suite and Method作者:Kai Li, Curtis Wigington, Chris Tensmeyer, Handong Zhao, Nikolaos Barmpalios, Vlad I. Morariu, Varun Manjunatha, Tong Sun, Yun Fu
【116】(跨域目標(biāo)檢測)Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation
作者:Yangtao Zheng, Di Huang, Songtao Liu, Yunhong Wang

近年來,在基于深度學(xué)習(xí)的目標(biāo)檢測中見證了巨大的進步。但是,由于domain shift問題,將現(xiàn)成的檢測器應(yīng)用于未知的域會導(dǎo)致性能顯著下降。為了解決這個問題,本文提出了一種新穎的從粗到精的特征自適應(yīng)方法來進行跨域目標(biāo)檢測。由于這種從粗到細(xì)的特征自適應(yīng),前景區(qū)域中的領(lǐng)域知識可以有效地傳遞。在各種跨域檢測方案中進行了廣泛的實驗,結(jié)果證明了所提出方法的廣泛適用性和有效性。
【117】Exploring Bottom-Up and Top-Down Cues With Attentive Learning for Webly Supervised Object Detection
作者:Zhonghua Wu, Qingyi Tao, Guosheng Lin, Jianfei Cai
【118】Context R-CNN: Long Term Temporal Context for Per-Camera Object Detection
作者:Sara Beery, Guanhang Wu, Vivek Rathod, Ronny Votel, Jonathan Huang
【119】Mixture Dense Regression for Object Detection and Human Pose Estimation
作者:Ali Varamesh, Tinne Tuytelaars
【120】Offset Bin Classification Network for Accurate Object Detection
作者:Heqian Qiu, Hongliang Li, Qingbo Wu, Hengcan Shi
【121】(Single Shot)NETNet: Neighbor Erasing and Transferring Network for Better Single Shot Object Detection
作者:Yazhao Li, Yanwei Pang, Jianbing Shen, Jiale Cao, Ling Shao
【122】Scale-Equalizing Pyramid Convolution for Object Detection
作者:Xinjiang Wang, Shilong Zhang, Zhuoran Yu, Litong Feng, Wayne Zhang
代碼:https://github.com/jshilong/SEPC

為了更好的解決物體檢測中的尺度問題,本文重新設(shè)計了經(jīng)典的單階段檢測器的FPN以及HEAD結(jié)構(gòu),通過構(gòu)造更具等變性的特征金子塔,以提高檢測器應(yīng)對尺度變化的魯棒性,可以使單階段檢測器在coco上提升~4mAP。
【123】(邊界檢測)Joint Semantic Segmentation and Boundary Detection Using Iterative Pyramid Contexts
作者:Mingmin Zhen, Jinglu Wang, Lei Zhou, Shiwei Li, Tianwei Shen, Jiaxiang Shang, Tian Fang, Long Quan
【124】Physically Realizable Adversarial Examples for LiDAR Object Detection
作者:James Tu, Mengye Ren, Sivabalan Manivasagam, Ming Liang, Bin Yang, Richard Du, Frank Cheng, Raquel Urtasun
【125】Hierarchical Graph Attention Network for Visual Relationship Detection
作者:Li Mi, Zhenzhong Chen
【126】Training a Steerable CNN for Guidewire Detection
作者:Donghang Li, Adrian Barbu
【127】Deep Residual Flow for Out of Distribution Detection
作者:Ev Zisselman, Aviv tamar
【128】Cylindrical Convolutional Networks for Joint Object Detection and Viewpoint Estimation
作者:Sunghun Joung, Seungryong Kim, Hanjae Kim, Minsu Kim, Ig-Jae Kim, Junghyun Cho, Kwanghoon Sohn
【129】Learning a Unified Sample Weighting Network for Object Detection
作者:Qi Cai, Yingwei Pan, Yu Wang, Jingen Liu, Ting Yao, Tao Mei
【130】Seeing without Looking: Contextual Rescoring of Object Detections for AP Maximization
作者:Lourenco V. Pato, Renato Negrinho, Pedro M. Q. Aguiar
【131】(single stage)RetinaTrack: Online Single Stage Joint Detection and Tracking
作者:Zhichao Lu, Vivek Rathod, Ronny Votel, Jonathan Huang
【132】Universal Physical Camouflage Attacks on Object Detectors
作者:Lifeng Huang, Chengying Gao, Yuyin Zhou, Cihang Xie, Alan L. Yuille, Changqing Zou, Ning Liu
【133】SaccadeNet: A Fast and Accurate Object Detector
作者:Shiyi Lan, Zhou Ren, Yi Wu, Larry S. Davis, Gang Hua
【134】Generalized ODIN: Detecting Out-of-Distribution Image Without Learning From Out-of-Distribution Data
作者:Yen-Chang Hsu, Yilin Shen, Hongxia Jin, Zsolt Kira
【1357】A Programmatic and Semantic Approach to Explaining and Debugging Neural Network Based Object Detectors
作者:Edward Kim, Divya Gopinath, Corina Pasareanu, Sanjit A. Seshia
【136】Revisiting the Sibling Head in Object Detector
作者:Guanglu Song, Yu Liu, Xiaogang Wang
代碼:https://github.com/Sense-X/TSD

目前很多研究表明目標(biāo)檢測中的分類分支和定位分支存在較大的偏差,本文從sibling head改造入手,跳出常規(guī)的優(yōu)化方向,提出TSD方法解決混合任務(wù)帶來的內(nèi)在沖突,從主干的proposal中學(xué)習(xí)不同的task-aware proposal,同時結(jié)合PC來保證TSD的性能,在COCO上達到了51.2mAP。
獲取方式
在?極市平臺?后臺回復(fù)?CVPR檢測,即可獲取136篇論文打包下載鏈接。