初一數(shù)學(xué)題:初一數(shù)學(xué)大題解題方法與技巧
數(shù)學(xué)的大題是很難的一部分,下面101教育小編就大家整理一下初一數(shù)學(xué)題大題解題方法與技巧,僅供參考。
1代入驗(yàn)證法
代入驗(yàn)證法也是一個(gè)比較有效且簡(jiǎn)單的算法,多用于已知條件求解的案例中,這種題目多為送分題,像在二次函數(shù)運(yùn)算時(shí),題目中給出二次函數(shù)經(jīng)過(guò)兩點(diǎn),求解這個(gè)解析式,如果不想列方程式進(jìn)行計(jì)算,可以直接數(shù)據(jù)代入答案中解析式,選出正確答案即可。
2常用的數(shù)學(xué)思想方法
1、數(shù)形結(jié)合思想:就是根據(jù)數(shù)學(xué)問(wèn)題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義,使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來(lái),并充分利用這種結(jié)合,尋求解體思路,使問(wèn)題得到解決。
2、聯(lián)系與轉(zhuǎn)化的思想:事物之間是相互聯(lián)系、相互制約的,是可以相互轉(zhuǎn)化的。數(shù)學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉(zhuǎn)化的。在解題時(shí),如果能恰當(dāng)處理它們之間的相互轉(zhuǎn)化,往往可以化難為易,化繁為簡(jiǎn)。如:代換轉(zhuǎn)化、已知與未知的轉(zhuǎn)化、特殊與一般的轉(zhuǎn)化、具體與抽象的轉(zhuǎn)化、部分與整體的轉(zhuǎn)化、動(dòng)與靜的轉(zhuǎn)化等等。
3理清思路,從問(wèn)題的思考角度培養(yǎng)學(xué)生的解題技巧
高效課堂教學(xué)除了概念的講解之外,主要集中在解題能力的培養(yǎng)上。學(xué)生不僅要理解例題,而且要做大量的練習(xí)題。在解題訓(xùn)練中,教師首先要引導(dǎo)學(xué)生分析題意,明確思路,再動(dòng)筆解題。培養(yǎng)學(xué)生解題思路時(shí),教師可以要求學(xué)生嚴(yán)格遵守一定的解題程序去思考,以形成良好的解題習(xí)慣。
進(jìn)行解題思考時(shí),學(xué)生首先要仔細(xì)地讀題,弄清楚題目考察什么,明確各個(gè)數(shù)據(jù)之間的關(guān)系,然后解題。有必要時(shí)可以把相關(guān)的數(shù)據(jù)關(guān)系先列出來(lái),以提高解題的效率,也提高解題的準(zhǔn)確度。例如,學(xué)習(xí)求“幾分之幾”的方法時(shí),教師先不必急著答題,而是引導(dǎo)學(xué)生進(jìn)行思考,誰(shuí)是誰(shuí)的幾分之幾。經(jīng)過(guò)思考,學(xué)生知道了用乘法計(jì)算,解題就容易了。從讀題、思考、發(fā)現(xiàn)規(guī)律到最后解題,學(xué)生的思路都非帶清晰,形成了良好的解題思考習(xí)慣,學(xué)習(xí)過(guò)程就易提高效率和質(zhì)量。
以上就是101教育小編為大家整理的初一數(shù)學(xué)大題解題方法與技巧。