就 高考一卷 題11. C.D.選項(xiàng) 一般性證明

設(shè)
P(x1,x12/(2p))? ??
Q(x2,x22/(2p))? ?
A(√(2pa),a)
B(0,-a)
拋物線
x2=2py
直線PQ
y=kx-a
有
x2=2p(kx-a)
即
x2-2pkx+2pa=0
即
x1+x2=2pk?
x1x2=2pa
k2≥2a/p
有
x12x22
1+(x12+x22)/(4p2)+x12x22/(16p^4)
=
4p2a2
1+(4p2k2-4pa)/(4p2)+a2/(4p2)
≥
4p2a2
1+(8ap-4pa)/(4p2)+a2/(4p2)
=
4p2a2+4a3p+a^4
=
(2pa+a2)2
即
OP2·OQ2≥OA^4
即
OP·OQ≥OA2
有
x12+(x12/(2p)+a)2
x22+(x22/(2p)+a)2
=
4p2a2+4p2a2(4p2k2-4pa)/(4p2)
+4pa3+a2(4p2k2-4pa)
+a^4
+a3(4p2k2-4pa)/p
+4pa3+4a^4
+a3(4p2k2-4pa)/p
+a2((4p2k2-4pa)2-8p2a2)/(4p2)
+a^4
≥
4p2a2+16a3p
+16a^4
=
(2pa+4a2)2
即
BP2·BQ2≥BA^4
即
BP·BQ≥BA2
得證
標(biāo)簽: