無窮積分及其斂散性
2023-07-18 22:59 作者:Re_logic-Y | 我要投稿
函數(shù)單調(diào)遞增時,有界則收斂,無界則發(fā)散至+∞(p1) f在實數(shù)R上Riemann可積的良定義(由命題1保證)(p2) cauchy主值與二重極限的差別(p2) R上Riemann可積→cauchy主值存在且相等(命題2)(p2)
cauchy主值存在但在R上Riemann不可積的例(p3)
非負(fù)函數(shù)無窮積分收斂判別充要條件(p3) 非負(fù)函數(shù)無窮積分的比較判別法及其極限形式(p3,4) 例:p積分(p4) (定理3)無窮積分的歸結(jié)原則(無窮積分→無窮級數(shù)(p4,5) (定理4)無窮級數(shù)→無窮積分(p6) 命題1(p7)
定理3與定理4的對比(p8) 對比數(shù)項級數(shù)收斂:an→0(n→∞)成立,無窮積分收斂:f(x)→0(x→+∞)不成立,例(p8) p1:
p2:
p3:
p4:
p5:
p6:
p7:
p8:
標(biāo)簽: