數(shù)學(xué)趣題(2)

證明:1-cos(x)≤(1/2)x2
證明:令f(x)=(1/2)x2-1+cos(x)
則f'(x)=x-sin(x),f''(x)=1-cos(x)≥0
所以f'(x)在R上單調(diào)遞增,又因?yàn)閒'(0)=0,所以當(dāng)x>0時(shí),f'(x)>0;當(dāng)x<0時(shí),f'(x)<0.
所以f(x)在(0,+∞)上嚴(yán)格單調(diào)遞增,在(-∞,0)上嚴(yán)格單調(diào)遞減.又因?yàn)閒(0)=0,所以當(dāng)x≠0時(shí),f(x)>f(0)=0
所以f(x)=(1/2)x2-1+cos(x)≥0.
所以1-cos(x)≤(1/2)x2,原命題得證
標(biāo)簽: