最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

偏微分計算

2023-06-22 11:41 作者:編程會一點建模不太懂  | 我要投稿

題目選自1996年考研數(shù)學(xué)

設(shè)變換%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09u%3Dx-2y%5C%5C%0A%09v%3Dx%2Bay%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20可把方程6%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5Cpartial%20y%7D-%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20y%5E2%7D%3D0%0A

化為%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%3D0

分別計算變量u%2Cvx%2Cy的偏導(dǎo)數(shù)

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09u%3Dx-2y%5C%5C%0A%09v%3Dx%2Bay%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20%5CRightarrow%20%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%3D1%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%3D-2%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%3D1%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%3Da%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

通過鏈?zhǔn)椒▌t將zx%2Cy的一階偏導(dǎo)化為zu%2Cv的一階偏導(dǎo)

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20x%7D%3D%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%3D%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%2B%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%20%5Cright)%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20y%7D%3D%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%3D%5Cleft(%20-2%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%2Ba%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%20%5Cright)%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

通過鏈?zhǔn)椒▌t將zx%2Cy的二階偏導(dǎo)化為zu%2Cv的二階偏導(dǎo)

%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5E2%7D%3D%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%20%5Cright)%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%20%5Cright)%7D%7B%5Cpartial%20x%7D%0A

%3D%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D

%3D%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D%2B2%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%0A

%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5Cpartial%20y%7D%3D%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%20%5Cright)%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%20%5Cright)%7D%7B%5Cpartial%20y%7D%0A

%3D%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D

%3D-2%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D%2B%5Cleft(%20a-2%20%5Cright)%20%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%2Ba%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%0A

%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20y%5E2%7D%3D-2%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%20%5Cright)%7D%7B%5Cpartial%20y%7D%2Ba%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%20%5Cright)%7D%7B%5Cpartial%20y%7D%0A

%3D-2%5Cleft(%20%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%20%5Cright)%20%2Ba%5Cleft(%20%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%20%5Cright)%20%0A

%3D4%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D-4a%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%2Ba%5E2%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D

將上述偏導(dǎo)數(shù)帶入方程

6%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5Cpartial%20y%7D-%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20y%5E2%7D%3D0

%5Cleft(%2010%2B5a%20%5Cright)%20%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%2B%5Cleft(%206%2Ba-a%5E2%20%5Cright)%20%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%3D0%0A

要使%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%3D0

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%0910%2B5a%5Cne%200%5C%5C%0A%096%2Ba-a%5E2%3D0%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20%5CRightarrow%20a%3D3

本題選自1996年考研數(shù)學(xué)真題,重點考察偏微分變換與鏈?zhǔn)椒▌t,計算量偏大,即便將此題放在現(xiàn)今考研數(shù)學(xué)命題中,也不失為一道好題難題。

近年來看來,考研數(shù)學(xué)的命題有往課本或者往年真題中重復(fù)命題的趨勢;譬如2022年考研數(shù)學(xué)一中切比雪夫不等式和線性代數(shù)大題在00年代考研數(shù)學(xué)中出過;2021年考研數(shù)學(xué)一的數(shù)一專題的第一問也是在同濟版高等數(shù)學(xué)中可找到類似的題目;2022年考研數(shù)學(xué)二中,線性代數(shù)大題瑞利商也是在同濟版線性代數(shù)課后題中能找到類似的題目。

偏微分計算的評論 (共 條)

分享到微博請遵守國家法律
兰考县| 涟水县| 武宁县| 满洲里市| 康保县| 阿城市| 新乡县| 禄劝| 盐池县| 舒兰市| 基隆市| 静安区| 安西县| 措美县| 衡阳市| 依兰县| 南岸区| 天水市| 鹰潭市| 大田县| 额尔古纳市| 乐亭县| 荔浦县| 根河市| 睢宁县| 米泉市| 咸阳市| 高阳县| 黄浦区| 泰州市| 德兴市| 改则县| 汝南县| 武夷山市| 马尔康县| 松原市| 沅江市| 渝北区| 历史| 宾阳县| 澄迈县|