算法-動(dòng)態(tài)規(guī)劃-斐波那契數(shù)
題目描述:
斐波那契數(shù),通常用?F(n)
?表示,形成的序列稱(chēng)為?斐波那契數(shù)列?。該數(shù)列由?0
?和?1
?開(kāi)始,后面的每一項(xiàng)數(shù)字都是前面兩項(xiàng)數(shù)字的和。也就是:
F(0) = 0,F(xiàn)(1)?= 1?
F(n) = F(n - 1) + F(n - 2),其中 n > 1
給你?n
?,請(qǐng)計(jì)算?F(n)
?。
遞歸法:
// 特別耗時(shí)? O(2^n)
public int fibDiGui(int n) {
????if(n<=1){
????????return n;
????}
????return fib(n-1)+fib(n-2);
}
普通計(jì)算法:
// 一般耗時(shí)? O(n)
public int fibBaoLi(int n) {
????int n1 = 0,n2=1,ns = 0;
????while(ns++<=n){
????????if(ns%2==0){
????????????n1+=n2;
????????}else{
????????????n2+=n1;
????????}
????}
????return n%2==0?n1:n2;
}
標(biāo)簽: