最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

BCJR應(yīng)用-ISI信道均衡

2023-01-31 22:08 作者:樂吧的數(shù)學(xué)  | 我要投稿

這個文章,我們講一下有碼間干擾信道的均衡問題,也算是 BCJR 算法的一個應(yīng)用。

錄制的視頻在?https://www.bilibili.com/video/BV1EY4y1d7Dp/

我們先看一下這個問題的背景。假設(shè)一個信道,數(shù)據(jù)發(fā)送后由于走不同的路徑(可能原因之一),到達(dá)接收端有不同的延遲以及不同的衰減系數(shù),例如 在 k=0 時刻發(fā)送了一個數(shù)據(jù),接收端在? k=0, k=1, k=2, k=4 這幾個時刻都收到了 k=0 時刻發(fā)送的數(shù)據(jù),每一個時刻收到的數(shù)據(jù),都對應(yīng)一個衰減系數(shù),我們這里不考慮相位的變化,只考慮幅度的衰減,則 h0, h1, h2, h4 這樣四個衰減系數(shù)。


則不同時刻收到的數(shù)據(jù)可以表示為:


%5Cbegin%7Baligned%7D%0A%0Ar_0%20%26%3D%20h_0%20x_0%20%2B%20n_0%20%5C%5C%0A%0Ar_1%20%26%3D%20h_0%20x_1%20%2B%20h_1%20x_0%20%2B%20n_1%5C%5C%0A%0Ar_2%20%26%3D%20h_0%20x_2%20%2B%20h_1%20x_1%20%2B%20h_2%20x_0%20%20%2B%20n_2%5C%5C%0A%0Ar_3%20%26%3D%20h_0%20x_3%20%2B%20h_1%20x_2%20%2B%20h_2%20x_1%20%2B%200%20x_0%20%20%2B%20n_3%5C%5C%0A%0Ar_4%20%26%3D%20h_0%20x_4%20%2B%20h_1%20x_3%20%2B%20h_2%20x_2%20%2B%200%20x_1%20%2B%20h_4%20x_0%20%20%2B%20n_4%5C%5C%0A%0Ar_5%20%26%3D%20h_0%20x_5%20%2B%20h_1%20x_4%20%2B%20h_2%20x_3%20%2B%200%20x_2%20%2B%20h_4%20x_1%20%20%2B%20n_5%5C%5C%0A%0Ar_6%20%26%3D%20h_0%20x_6%20%2B%20h_1%20x_5%20%2B%20h_2%20x_4%20%2B%200%20x_3%20%2B%20h_4%20x_2%20%20%2B%20n_6%5C%5C%0A%0A...%20%5C%5C%0A%0Ar_k%20%26%3D%20h_0%20x_k%20%2B%20h_1%20x_%7Bk-1%7D%20%2B%20h_2%20x_%7Bk-2%7D%20%2B%200%20x_%7Bk-3%7D%20%2B%20h_4%20x_%7Bk-4%7D%20%2B%20n_k%0A%0A%5Cend%7Baligned%7D


實(shí)際上就是一個卷積的過程,如果令 h_3%3D0, 則:

r_k%20%3D%20%5Csum_%7Bi%3D0%7D%5E4%20h_i%20x_%7Bk-i%7D%2B%20n_k


可以畫成如下的圖形:

圖一:







對于這樣一個信道,我們可以想到,在收到 N 個接收數(shù)據(jù) r 后,如何估計出來發(fā)送的數(shù)據(jù) X ? 這就是所謂的信道均衡或者說信道 detection 的問題。

用概率公式的方式,可以表示為:

p(x_0%2Cx_1%2C%5Ccdots%20%2Cx_%7BN-1%7D%7Cr_0%2Cr_1%2C%5Ccdots%2C%20r_%7BN-1%7D)%20%20%20%5Ctag%201


由于我們做的是卷積計算,因此,公式 (1) 不能寫成多個概率的乘積,所以,計算量會非常大。我們可以按照每個輸入時刻來計算概率:

p(x_k%3Dx%7Cr_0%2Cr_1%2C%5Ccdots%2C%20r_%7BN-1%7D)%20%20%20%5Ctag%202


p(x_k%3Dx%7Cr)%20%20%20%5Ctag%203


其中 r 是一個 N 維向量.


我們可以把上面的圖一,看成是碼率為 1 的卷積碼,那么,我們就可以用 BCJR 算法來計算公式 (2) 的概率。

用這種方法做的均衡(equalization),是基于柵格的方法(Trellis-based method),當(dāng)然還有其他方法,例如線性濾波的方法。


從公式 (3) 出發(fā):

p(x_k%3Dx%7Cr)%3D%5Csum_%7B(p%2Cq)%5Cin%20S_x%7D%20p(%5Cpsi_k%3Dp%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7Cr)%20%20%20%5Ctag%204


其中 S_x?表示在 t 時刻,輸入 x 引起的所有可能的狀態(tài)轉(zhuǎn)移.


我們接著分析公式 (4) 中的?p(%5Cpsi_k%3Dp%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7Cr)%20

p(%5Cpsi_k%3Dp%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7Cr)%20%20%3D%20%5Cfrac%7Bp(%5Cpsi_k%3Dp%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2Cr)%7D%7Bp(r)%7D%20%20%5Ctag%205


繼續(xù)分析公式 (5) 中分子的部分:


%5Cbegin%7Baligned%7D%0A%0Ap(%5Cpsi_k%3Dp%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2Cr)%0A%0A%26%3D%20p(%5Cpsi_k%3Dp%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2Cr_%7B%3Ck%7D%2Cr_k%2Cr_%7B%3Ek%7D)%20%20%5C%5C%0A%0A%26%3D%20p(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dp%2Cr_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2Cr_%7B%3Ek%7D)%20%20%5Cquad%20%5Cquad%20%20%E6%97%B6%E9%97%B4%E9%A1%BA%E5%BA%8F%E9%87%8D%E6%8E%92%20%20%5C%5C%0A%0A%26%3Dp(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2Cr_%7B%3Ek%7D%7Cr_%7B%3Ck%7D%2C%5Cpsi_k%3Dp)%20p(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dp)%20%5Cquad%20%5Cquad%20%20%E6%9D%A1%E4%BB%B6%E6%A6%82%E7%8E%87%EF%BC%8C%E5%89%8D%E4%B8%A4%E4%B8%AA%20%20%5C%5C%0A%0A%26%3Dp(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dp)%20p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2Cr_%7B%3Ek%7D%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%5Cquad%20%20%E9%A9%AC%E5%B0%94%E7%A7%91%E5%A4%AB%E6%80%A7%20%20%5C%5C%0A%0A%26%3Dp(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dp)%20p(r_%7B%3Ek%7D%7Cr_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2C%5Cpsi_k%3Dp)p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%20%E6%9D%A1%E4%BB%B6%E6%A6%82%E7%8E%87%EF%BC%8C%E5%89%8D%E4%B8%A4%E4%B8%AA%20%20%5C%5C%0A%0A%26%3Dp(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dp)%20p(r_%7B%3Ek%7D%7C%5Cpsi_%7Bk%2B1%7D%3Dq)p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%20%E9%A9%AC%E5%B0%94%E7%A7%91%E5%A4%AB%E6%80%A7%5C%5C%0A%0A%26%3Dp(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dp)%20p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20p(r_%7B%3Ek%7D%7C%5Cpsi_%7Bk%2B1%7D%3Dq)%20%20%5Cquad%20%20%E9%87%8D%E6%8E%92%5C%5C%0A%0A%26%3A%3D%20%5Calpha(p)%20%5Cgamma(p%2Cq)%20%5Cbeta(q)%0A%0A%5Cend%7Baligned%7D%20%20%5Ctag%206


對于 %5Calpha?概率


%0A%5Cbegin%7Baligned%7D%0A%0A%5Calpha_k(q)%20%0A%0A%26%3Dp(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dq)%20%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7Dp(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dq%2C%5Cpsi_%7Bk-1%7D%3Dq)%20%20%5Cquad%20%E5%85%A8%E6%A6%82%E7%8E%87%2F%E8%BE%B9%E7%BC%98%E6%A6%82%E7%8E%87%20%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7Dp(r_%7B%3Ck-1%7D%2Cr_%7Bk-1%7D%2C%5Cpsi_k%3Dq%2C%5Cpsi_%7Bk-1%7D%3Dq)%20%20%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7Dp(r_%7B%3Ck-1%7D%2C%5Cpsi_%7Bk-1%7D%3Dq%2Cr_%7Bk-1%7D%2C%5Cpsi_k%3Dq)%20%20%20%5Cquad%20%E6%8C%89%E6%97%B6%E9%97%B4%E9%87%8D%E6%8E%92%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7Dp(r_%7Bk-1%7D%2C%5Cpsi_k%3Dq%7Cr_%7B%3Ck-1%7D%2C%5Cpsi_%7Bk-1%7D%3Dq)p(r_%7B%3Ck-1%7D%2C%5Cpsi_%7Bk-1%7D%3Dq)%20%20%20%5Cquad%20%E5%89%8D%E4%B8%A4%E4%B8%AA%EF%BC%8C%E6%9D%A1%E4%BB%B6%E6%A6%82%E7%8E%87%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7Dp(r_%7Bk-1%7D%2C%5Cpsi_k%3Dq%7C%5Cpsi_%7Bk-1%7D%3Dq)p(r_%7B%3Ck-1%7D%2C%5Cpsi_%7Bk-1%7D%3Dq)%20%20%20%5Cquad%20%E9%A9%AC%E5%B0%94%E7%A7%91%E5%A4%AB%E6%80%A7%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7Dp(r_%7B%3Ck-1%7D%2C%5Cpsi_%7Bk-1%7D%3Dq)p(r_%7Bk-1%7D%2C%5Cpsi_k%3Dq%7C%5Cpsi_%7Bk-1%7D%3Dq)%20%20%20%5Cquad%20%E9%87%8D%E6%8E%92%5C%5C%0A%0A%26%3D%5Csum_%7Bp-%3Eq%7D%20%5Calpha_%7Bk-1%7D(p)%20%5Cgamma_%7Bk-1%7D(p%2Cq)%0A%0A%5Cend%7Baligned%7D%20%5Ctag%207


對于 %5Cbeta?概率


%0A%5Cbegin%7Baligned%7D%0A%0A%5Cbeta_k(p)%0A%0A%26%3D%20p(r_%7B%3Ek-1%7D%7C%5Cpsi_k%3Dp)%20%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7D%20p(r_%7B%3Ek-1%7D%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%E5%85%A8%E6%A6%82%E7%8E%87%2F%E8%BE%B9%E7%BC%98%E6%A6%82%E7%8E%87%20%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7D%20p(r_k%2Cr_%7B%3Ek%7D%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7D%20p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2Cr_%7B%3Ek%7D%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%20%E6%8C%89%E6%97%B6%E9%97%B4%E9%87%8D%E6%8E%92%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7D%20p(r_%7B%3Ek%7D%7Cr_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2C%5Cpsi_k%3Dp)p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%E5%89%8D%E4%B8%A4%E4%B8%AA%EF%BC%8C%E6%9D%A1%E4%BB%B6%E6%A6%82%E7%8E%87%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7D%20p(r_%7B%3Ek%7D%7C%5Cpsi_%7Bk%2B1%7D%3Dq)p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%E9%A9%AC%E5%B0%94%E7%A7%91%E5%A4%AB%E6%80%A7%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7D%20p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20p(r_%7B%3Ek%7D%7C%5Cpsi_%7Bk%2B1%7D%3Dq)%20%20%5Cquad%20%E9%87%8D%E6%8E%92%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7D%20%5Cgamma_k(p%2Cq)%20%5Cbeta_%7Bk%2B1%7D(q)%0A%0A%5Cend%7Baligned%7D%20%5Ctag%208


因此,把公式 (6) 代入公式 (4)

p(x_k%3Dx%7Cr)%3D%5Csum_%7B(p%2Cq)%7D%20%5Calpha(p)%20%5Cgamma(p%2Cq)%20%5Cbeta(q)


%5Calpha%2C%20%5Cbeta?概率又可以根據(jù)公式 (7) (8) 遞推得到。


關(guān)于 %5Cgamma?概率,可以根據(jù)先驗(yàn)概率和信道給的信息計算出來:

%5Cbegin%7Baligned%7D%0A%0A%5Cgamma(p%2Cq)%20%0A%0A%26%3D%20p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5C%5C%0A%0A%26%3D%20p(r_k%7C%5Cpsi_%7Bk%2B1%7D%3Dq%2C%5Cpsi_k%3Dp)%20p(%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5C%5C%0A%0A%26%3D%20p(r_k%7Cx_k)%20p(x_k)%0A%0A%0A%0A%5Cend%7Baligned%7D%20%20%5Ctag%209%0A%0A



所以,我們把這種有碼間干擾 (Inter-Symbol Interference)的信道,可以看成等效的碼率為1的卷積碼,從而可以使用 BCJR 算法做概率計算,從而做信道detection(也成為信道均衡? channel equalization).


這也算 BCJR 算法的一個具體應(yīng)用吧。


BCJR應(yīng)用-ISI信道均衡的評論 (共 條)

分享到微博請遵守國家法律
思南县| 仙居县| 六安市| 伽师县| 格尔木市| 富源县| 遂宁市| 怀化市| 当涂县| 翁牛特旗| 南陵县| 平遥县| 青海省| 青河县| 河池市| 东山县| 秦皇岛市| 澄城县| 杂多县| 双牌县| 措美县| 马鞍山市| 台中县| 长沙市| 阿拉善右旗| 郴州市| 桐柏县| 本溪市| 丹巴县| 海淀区| 成武县| 岚皋县| 新巴尔虎左旗| 平利县| 城市| 庆云县| 吴旗县| 西青区| 开化县| 潜山县| 古交市|