最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

A-0-2導(dǎo)數(shù)與應(yīng)用(1/2)

2023-08-26 18:41 作者:夏莉家的魯魯  | 我要投稿

0.2.1 導(dǎo)數(shù)的定義與表示

物理學(xué)中,我們經(jīng)常需要求一些物理量的變化率,而數(shù)學(xué)中的導(dǎo)函數(shù)是專門研究變化率的工具。

y%3Df(x)是關(guān)于x的函數(shù),則在任一點(diǎn),f(x)關(guān)于x的導(dǎo)函數(shù)的定義如下:

%5Clim_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B%5CDelta%20y%7D%7B%5CDelta%20x%7D%5Cquad%20or%5Cquad%20%5Clim_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7Bf(x%2B%5CDelta%20x)-f(x)%7D%7B%5CDelta%20x%7D

求導(dǎo)函數(shù)的過程簡稱求導(dǎo),而f(x)稱為導(dǎo)函數(shù)對(duì)應(yīng)的原函數(shù).

導(dǎo)函數(shù)的表示符號(hào)有很多,物理中常用的有2種:

%5Cdfrac%7Bdf%7D%7Bdx%7D%2Cf'(x)

由此我們可以得到

v%3D%5Cdfrac%7Bdx%7D%7Bdt%7D%3Dx'(t)%2Ca%3D%5Cdfrac%7Bdv%7D%7Bdt%7D%3Dv'(t)

特別地,在物理中,如果是對(duì)時(shí)間求導(dǎo),我們可以在物理量上加一點(diǎn)表示:

%5Cdot%20x%5Cequiv%20x'(t)%2C%5Cdot%20v%5Cequiv%20v'(t)

不難看出,函數(shù)的導(dǎo)函數(shù)也可以有自己的導(dǎo)函數(shù),我們可以把求導(dǎo)函數(shù)的次數(shù)叫做階,如果對(duì)x求2次導(dǎo)數(shù),就叫做求x的二階導(dǎo)數(shù)。對(duì)應(yīng)的符號(hào)分別表示為:

%5Cdfrac%7Bd%5E2f%7D%7Bdx%5E2%7D%3D%20f''(x)

如果是對(duì)時(shí)間求2次導(dǎo)數(shù),可以在物理量上方加2個(gè)點(diǎn):%5Cddot%20x

由基本定義以及極限的運(yùn)算,我們可以求得一些基本初等函數(shù)的導(dǎo)數(shù):

(x%5Ea)'%3Dax%5E%7Ba-1%7D

當(dāng)x%5Cne%200時(shí),

(x%5Ea)'%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B(x%2B%5CDelta%20x)%5Ea-x%5Ea%7D%7B%5CDelta%20x%7D%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7Dx%5Ea%5Cdfrac%7B(1%2B%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D)%5Ea-1%7D%7B%5CDelta%20x%7D

%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7Bx%5Eaa%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%7D%7B%5CDelta%20x%7D%3Dax%5E%7Ba-1%7D

當(dāng)x%3D0時(shí),結(jié)果符合上式.

(a%5Ex)'%3Da%5Ex%5Cln%20a

(a%5Ex)'%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7Ba%5E%7Bx%2B%5CDelta%20x%7D-a%5Ex%7D%7B%5CDelta%20x%7D%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7Da%5Ex%5Cdfrac%7Ba%5E%7B%5CDelta%20x%7D-1%7D%7B%5CDelta%20x%7D

%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7Da%5Ex%5Cdfrac%7Be%5E%7B(%5Cln%20a)%5E%7B%5CDelta%20x%7D%7D-1%7D%7B%5CDelta%20x%7D%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7Da%5Ex%5Cdfrac%7B%5Cln%20a%5CDelta%20x%7D%7B%5CDelta%20x%7D%3Da%5Ex%5Cln%20a

特殊地,當(dāng)a=e時(shí),(e^x)'=e^x.

(log_ax)'%3D%5Cdfrac%7B1%7D%7Bx%5Cln%20a%7D

(%5Clog_ax)'%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B%5Clog_a(x%2B%5CDelta%20x)-%5Clog_ax%7D%7B%5CDelta%20x%7D%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B1%7D%7B%5CDelta%20x%7D%7B%5Clog_a(%5Cdfrac%7Bx%2B%5CDelta%20x%7D%7Bx%7D)%7D

%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B1%7D%7B%5CDelta%20x%7D%7B%5Clog_a(1%2B%5Cdfrac%7B%5CDelta%20x%7D%7Bx%7D)%7D%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B1%7D%7Bx%7D%5Cdfrac%7Bx%7D%7B%5CDelta%20x%7D%5Clog_a(1%2B%5Cdfrac%7B%5CDelta%20x%7D%7Bx%7D)

%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B1%7D%7Bx%7D%5Clog_a(%5Cdfrac%7Bx%2B%5CDelta%20x%7D%7Bx%7D)%5E%5Cfrac%7B1%7D%7B%5CDelta%20x%7D%3D%5Cdfrac%7B1%7D%7Bx%7D%5Clog_ae%3D%5Cdfrac%7B1%7D%7Bx%5Cln%20a%7D

特殊地,當(dāng)a%3De時(shí),

(%5Cln%20x)'%3D%5Cdfrac%7B1%7D%7Bx%7D

(%5Csin%20x)'%3D%5Ccos%20x

(%5Csin%20x)'%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B%5Csin(x%2B%5CDelta%20x)-%5Csin%20x%7D%7B%5CDelta%20x%7D

%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B%5Csin%20x%5Ccos(%5CDelta%20x)%2B%5Ccos%20x%5Csin(%5CDelta%20x)-%5Csin%20x%7D%7B%5CDelta%20x%7D

%3D%5Clim%5Climits_%7B%5CDelta%20x%5Crightarrow0%7D%5Cdfrac%7B%5Ccos%20x%5Csin(%5CDelta%20x)%7D%7B%5CDelta%20x%7D%3D%5Ccos%20x

0.2.2 導(dǎo)數(shù)運(yùn)算法則

利用導(dǎo)函數(shù)的定義,我們?nèi)菀椎玫揭韵逻\(yùn)算法則:

四則運(yùn)算

1.加減

%5Bf(x)%5Cpm%20g(x)%5D'%3Df'(x)%5Cpm%20g'(x)

2.數(shù)乘

%5B%5Calpha%20f(x)%5D'%3D%5Calpha%20f'(x)

3.乘法

%5Bf(x)%5Ccdot%20g(x)%5D'%3Df'(x)g(x)%2Bf(x)g'(x)

4.除法

%5B%5Cdfrac%7Bf(x)%7D%7Bg(x)%7D%5D'%3D%5Cdfrac%7Bf'(x)g(x)-f(x)g'(x)%7D%7Bg%5E2(x)%7D

復(fù)合函數(shù)

%5C%7Bf%5Bg(x)%5D%5C%7D'%3Df'(g)%5Ccdot%20g'(x)

復(fù)合函數(shù)求導(dǎo)一直是難點(diǎn)中的難點(diǎn),比如求y%3Dsin%5E2x的導(dǎo)函數(shù),需要注意y是正弦函數(shù)和冪函數(shù)的復(fù)合函數(shù),令u%3D%5Csin%20x,則y%3Du%5E2

y'%5Bu(x)%5D%3Dy'(u)%5Ccdot%20u'(x)%3D2u%5Ccdot%5Ccos%20x%3D2%5Csin%20x%5Ccos%20x

隱函數(shù)

形如y%3Df(x)的函數(shù),我們稱為顯函數(shù),相應(yīng)的,有些函數(shù)并沒有表示成y%3Df(x)的形式,比如xy%2Bx%2B1%3D0.我們稱之隱函數(shù)。

在對(duì)隱函數(shù)求導(dǎo)時(shí),我們依然可以采用上述求導(dǎo)法則,比如上式,

(xy%2Bx%2B1)'%3D0'

(y%2Bxy'%2B1%2B0)%3D0

y'%3D-%5Cdfrac%7By%2B1%7D%7Bx%7D

代入y%3D-%5Cdfrac%7Bx%2B1%7D%7Bx%7D

y'%3D%5Cdfrac%7B1%7D%7Bx%5E2%7D

反函數(shù)

用因變量來表示自變量的函數(shù),我們稱為對(duì)應(yīng)函數(shù)的反函數(shù)。y%3Df(x)的反函數(shù),可以表示為x%3Df%5E%7B-1%7D(y)%0A%0A反函數(shù)導(dǎo)數(shù)等于原函數(shù)導(dǎo)數(shù)的倒數(shù)

%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B%5Cdfrac%7Bdx%7D%7Bdy%7D%7D%5Cquad%20or%5Cquad%20f'(x)%3D%5Cdfrac%7B1%7D%7B%5Bf%5E%7B-1%7D(y)%5D'%7D

比如對(duì)數(shù)函數(shù)的導(dǎo)數(shù)

(%5Clog_ax)'%3D%5Cdfrac%7B1%7D%7B(a%5Ey)'%7D%3D%5Cdfrac%7B1%7D%7B(a%5Ey%5Cln%20a)%7D%3D%5Cdfrac%7B1%7D%7B(x%5Cln%20a%20)%7D


A-0-2導(dǎo)數(shù)與應(yīng)用(1/2)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
正镶白旗| 安西县| 繁昌县| 汾西县| 若尔盖县| 平湖市| 体育| 平武县| 曲阳县| 兴海县| 武宣县| 襄汾县| 荥经县| 宁夏| 临夏市| 西乌| 鹤峰县| 太仆寺旗| 芷江| 大邑县| 齐河县| 平潭县| 洪洞县| 许昌县| 咸阳市| 武冈市| 孝感市| 榕江县| 万全县| 临泽县| 桃江县| 蒙城县| 获嘉县| 天峨县| 新化县| 长宁区| 巫山县| 宜宾市| 涞水县| 竹山县| 大石桥市|