最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

對(duì)近期做的幾道題的點(diǎn)評(píng)

2023-10-14 17:47 作者:現(xiàn)代微積分  | 我要投稿

今天稍微有些空閑,于是來回做一下高中題來找自信了[doge]由于評(píng)論區(qū)空白太小寫不下,所以以下幾題作為在答區(qū)給出的解法后的拓展

例(1):

【24例60】黃岡市2024屆高三九月調(diào)考11節(jié)選,數(shù)列易錯(cuò)題

后面經(jīng)過細(xì)心的網(wǎng)友發(fā)現(xiàn),原題存在歧義,這里對(duì)條件多加一個(gè)限制才嚴(yán)謹(jǐn):a_%7Bn%2B1%7D%2Ba_n%5Cne%200

由于視頻中寫了詳細(xì)過程,這里就點(diǎn)下思路即可

給條件的n換為n+1,然后兩式相減利用a_%7Bn%2B1%7D%3DS_%7Bn%2B1%7D-S_n消去Sn

(這是條件中同時(shí)含有an和Sn時(shí)的常規(guī)思路了)

快進(jìn)到

a_1%3D19%2Ca_%7Bn%2B1%7D-a_n%3D-2~%5Ctext%7Bor%7D~%20a_%7Bn%2B1%7D%2Ba_n%3D%200%5Ctext%7B(%E8%88%8D)%7D

于是%5Cleft%20%5C%7B%20a_n%20%5Cright%20%5C%7D%20是首項(xiàng)為19,公差為-2的等差數(shù)列

a_n%3D19-2(n-1)%3D-2n%2B21


答區(qū)已經(jīng)給出了簡(jiǎn)潔的寫法(也就是直接判斷bn的正負(fù)),這多作一個(gè)拓展

ps:不是為了復(fù)雜化解決上面的問題,而是同一題可以有不同的提問,遇到相同類似的題可以進(jìn)行拓展

就是對(duì)于這種連續(xù)等差的乘積項(xiàng),其求和式也是初等的,給出以下幾個(gè)模型以及證明

模型一:連續(xù)等差項(xiàng)相乘型

%5Cleft%20%5C%7B%20%20a_n%5Cright%20%5C%7D%20為等差數(shù)列,b_n%3Da_%7Bn%7Da_%7Bn%2B1%7Da_%7Bn%2B2%7D...a_%7Bn%2Bk%7D

則有:

%5Cbegin%7Balign%7D%0A%26b_%7Bn%2B1%7D-b_n%5C%5C%0A%3D%26%7B%5Ccolor%7BBlue%7D%20%7Ba_%7Bn%2B1%7Da_%7Bn%2B2%7Da_%7Bn%2B3%7D...a_%7Bn%2Bk%7D%7D%7D%20a_%7Bn%2Bk%2B1%7D-a_%7Bn%7D%7B%5Ccolor%7BBlue%7D%20%7Ba_%7Bn%2B1%7Da_%7Bn%2B2%7D...a_%7Bn%2Bk-1%7Da_%7Bn%2Bk%7D%7D%7D%20%5C%5C%0A%3D%26(a_%7Bn%2Bk%2B1%7D-a_n)(%7B%5Ccolor%7BBlue%7D%20%7Ba_%7Bn%2B1%7Da_%7Bn%2B2%7Da_%7Bn%2B3%7D...a_%7Bn%2Bk%7D%7D%7D%20)%5C%5C%0A%3D%26(k%2B1)d(a_%7Bn%2B1%7Da_%7Bn%2B2%7Da_%7Bn%2B3%7D...a_%7Bn%2Bk%7D)%0A%5Cend%7Balign%7D

整理得:

c_n%3Da_%7Bn%2B1%7Da_%7Bn%2B2%7Da_%7Bn%2B3%7D...a_%7Bn%2Bk%7D%3D%5Cfrac%7B1%7D%7B(k%2B1)d%7D(b_%7Bn%2B1%7D-b_n)%20

那么這個(gè)新數(shù)列cn就可以用裂項(xiàng)相消了。觀察其形式可知,其比bn少了個(gè)an,比b(n+1)少了個(gè)a(n+k+1),因此對(duì)于這種等差連乘型的數(shù)列求和,關(guān)鍵步驟就是往最左/最右各多找一項(xiàng),然后構(gòu)造裂項(xiàng)即可


回到該題,b_n%3D%20(-2n%2B21)(-2n%2B19)(-2n%2B17)

c_n%3D(-2n%2B23)(-2n%2B21)(-2n%2B19)(-2n%2B17)

則有:

%5Cbegin%7Balign%7D%0A%26c_%7Bn%2B1%7D-c_n%5C%5C%0A%3D%26%7B%5Ccolor%7BBlue%7D%20%7B(-2n%2B21)(-2n%2B19)(-2n%2B17)%7D%7D%20(-2n%2B15)%5C%5C%0A-%26(-2n%2B23)%7B%5Ccolor%7BBlue%7D%20%7B(-2n%2B21)(-2n%2B19)(-2n%2B17)%7D%7D%20%5C%5C%0A%3D%26-8%7B%5Ccolor%7BBlue%7D%20%7B(-2n%2B21)(-2n%2B19)(-2n%2B17)%7D%7D%20%5C%5C%0A%3D%26-8b_n%20%0A%5Cend%7Balign%7D

于是

b_n%3D-%5Cfrac%7B1%7D%7B8%7D%20(c_%7Bn%2B1%7D-c_n)

兩邊求和得:

%5Cbegin%7Balign%7D%0AT_n%26%3Dc_%7Bn%2B1%7D-c_1%5C%5C%0A%26%3D%5Cbbox%5B%23CFF%2C5px%5D%7B(-2n%2B21)(-2n%2B19)(-2n%2B17)(-2n%2B15)%7D%5C%5C%0A%26%5Cbbox%5B%23CFF%2C5px%5D%7B-21%5Ctimes%2019%5Ctimes%2017%5Ctimes%2015%7D%0A%5Cend%7Balign%7D


附上一道練習(xí)題:

22年佛山二模數(shù)列題

第二問答案:(4n3+6n2-n)/3


再進(jìn)一步拓展,如果是多項(xiàng)式型數(shù)列的求和,其有一般方法,可自行搜索"自然數(shù)等冪和問題"

模型二:連續(xù)等差項(xiàng)相乘取倒數(shù)型

%5Cleft%20%5C%7B%20%20a_n%5Cright%20%5C%7D%20為等差數(shù)列,b_n%3D%5Cfrac%7B1%7D%7Ba_%7Bn%7Da_%7Bn%2B1%7Da_%7Bn%2B2%7D...a_%7Bn%2Bk%7D%7D%20

%5Cbegin%7Balign%7D%0A%26b_%7Bn%2B1%7D-b_n%5C%5C%0A%3D%26%5Cfrac%7B1%7D%7B%7B%5Ccolor%7BBlue%7D%7B%20a_%7Bn%2B1%7Da_%7Bn%2B2%7D...a_%7Bn%2Bk%7D%7D%7D%20a_%7Bn%2Bk%2B1%7D%7D%20%20-%5Cfrac%7B1%7D%7Ba_%7Bn%7D%7B%5Ccolor%7BBlue%7D%20%7Ba_%7Bn%2B1%7D...a_%7Bn%2Bk-1%7Da_%7Bn%2Bk%7D%7D%7D%20%20%7D%20%5C%5C%0A%3D%26%5Cfrac%7Ba_n-a_%7Bn%2Bk%2B1%7D%7D%7B%7B%20a_na_%7Bn%2B1%7Da_%7Bn%2B2%7D...a_%7Bn%2Bk%7D%7D%20a_%7Bn%2Bk%2B1%7D%7D%20%5C%5C%0A%3D%26%5Cfrac%7B-(k%2B1)d%7D%7B%7B%20a_na_%7Bn%2B1%7Da_%7Bn%2B2%7D...a_%7Bn%2Bk%7D%7D%20a_%7Bn%2Bk%2B1%7D%7D%0A%5Cend%7Balign%7D

整理得:

c_n%3D%5Cfrac%7B1%7D%7B%7B%20a_na_%7Bn%2B1%7Da_%7Bn%2B2%7D...a_%7Bn%2Bk%7D%7D%20a_%7Bn%2Bk%2B1%7D%7D%3D%5Cfrac%7B1%7D%7B-(k%2B1)d%7D%20(b_%7Bn%2B1%7D-b_n)

那么這個(gè)新數(shù)列cn就可以用裂項(xiàng)相消了。觀察其形式可知,其分母比bn多了個(gè)a(n+k+1);其分母b(n+1)少了個(gè)an,因此對(duì)于這種等差連乘取倒數(shù)型的數(shù)列求和,關(guān)鍵步驟就是往最左/最右各多去一項(xiàng),然后構(gòu)造裂項(xiàng)即可


例子:求a_n%3D%5Cfrac%7B1%7D%7B(2n%2B1)(2n%2B3)(2n%2B5)%7D%20的前n項(xiàng)和S_n

b_n%3D%5Cfrac%7B1%7D%7B(2n%2B1)(2n%2B3)%7D%20,則有:

%5Cbegin%7Balign%7D%0A%26b_%7Bn%2B1%7D-b_n%5C%5C%0A%3D%26%5Cfrac%7B1%7D%7B(2n%2B3)(2n%2B5)%7D%20-%5Cfrac%7B1%7D%7B(2n%2B1)(2n%2B3)%7D%5C%5C%0A%3D%26%20%5Cfrac%7B-4%7D%7B(2n%2B1)(2n%2B3)(2n%2B5)%7D%5C%5C%0A%3D%26-4a_n%0A%5Cend%7Balign%7D

整理得:a_n%3D-%5Cfrac%7B1%7D%7B4%7D(b_%7Bn%2B1%7D-b_n)%20

求和得:

%5Cbegin%7Balign%7D%0AS_n%26%3D-%5Cfrac%7B1%7D%7B4%7D(b_%7Bn%2B1%7D-b_1)%5C%5C%0A%26%3D%5Cbbox%5B%23CFF%2C5px%5D%7B-%5Cfrac%7B1%7D%7B4%7D%5B%5Cfrac%7B1%7D%7B(2n%2B3)(2n%2B5)%7D%20-%5Cfrac%7B1%7D%7B15%7D%20%5D%7D%0A%5Cend%7Balign%7D


例子的話去年的一張金太陽模擬(摸底考)卷考到了,但是不太記得線索所以沒搜到就不貼了,總之這裂項(xiàng)在試卷上考到過。還有一道題是結(jié)合“萊布尼茲三角形”來考的,那張?jiān)嚲砉烙?jì)早就扔了[doge]

在此基礎(chǔ)上,我又回憶起有一道高考題就用到了這種裂項(xiàng)

相當(dāng)于是對(duì)巴塞爾問題上確界π2/6的估計(jì)。放縮這一步就又是重點(diǎn)了,由于篇幅原因就先不作講解了,先當(dāng)練習(xí)~

還有一道是三角函數(shù)的小題~

【每日一題】當(dāng)三角函數(shù)單調(diào)時(shí),ω的取值范圍

這題up主是用局部圖(也就是直接用f(x)的圖)來做的,還用了求導(dǎo),未免顯得麻煩了些,因此這里給出更常用的換元法來做

t%3D%5Comega%20x-%5Cfrac%7B%5Cpi%20%7D%7B6%7D,則需函數(shù)y%3D%5Csin%20tt%5Cin%20(-%5Cfrac%7B%5Cpi%20%7D%7B3%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)上單調(diào)

ps:這是由于復(fù)合函數(shù)單調(diào)性的"同增異減",內(nèi)層函數(shù)t%3D%5Comega%20x-%5Cfrac%7B%5Cpi%20%7D%7B6%7Dx%5Cin%20(-%5Cfrac%7B%5Cpi%20%7D%7B3%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B6%7D)時(shí)單增,因此外層函數(shù)y%3D%5Csin%20t需在t%5Cin%20(-%5Cfrac%7B%5Cpi%20%7D%7B3%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)上單調(diào)

因此下面畫出y%3D%5Csin%20t的圖像進(jìn)行討論:

作出直觀的圖后,就可以以一種"動(dòng)態(tài)思想"去分析問題了

當(dāng)%5Comega由0開始增大時(shí),區(qū)間左端點(diǎn)-%5Cfrac%7B%5Cpi%20%7D%7B3%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D-%5Cfrac%7B%5Cpi%20%7D%7B6%7D開始向左運(yùn)動(dòng);

而區(qū)間右端點(diǎn)%5Cfrac%7B%5Cpi%20%7D%7B6%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D-%5Cfrac%7B%5Cpi%20%7D%7B6%7D開始向右運(yùn)動(dòng);

因此-%5Cfrac%7B%5Cpi%20%7D%7B6%7D這就在區(qū)間里面,那么只能是t%5Cin%20%5B-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%2C%5Cfrac%7B%5Cpi%20%7D%7B2%7D%5D這個(gè)遞增區(qū)間了

于是有%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A-%5Cfrac%7B%5Cpi%20%7D%7B3%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cgeqslant%20-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5C%5C%0A%5Cfrac%7B%5Cpi%20%7D%7B6%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cleqslant%20%5Cfrac%7B%5Cpi%20%7D%7B2%7D%0A%5Cend%7Bmatrix%7D%5Cright.%0A%5CRightarrow%20%5Comega%20%5Cleqslant%201

%20%5Comega%20的取值范圍為:(0%2C1%5D

好了,加大一下難度,那么這道題我把題干區(qū)間改為x%5Cin%20(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B9%7D)單調(diào),那么該怎么做呢?

方法是一樣的,依舊是換元

t%3D%5Comega%20x-%5Cfrac%7B%5Cpi%20%7D%7B6%7D,則需函數(shù)y%3D%5Csin%20tt%5Cin%20(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)上單調(diào)


當(dāng)%5Comega由0開始增大時(shí),區(qū)間左端點(diǎn)%5Cfrac%7B%5Cpi%20%7D%7B10%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D-%5Cfrac%7B%5Cpi%20%7D%7B6%7D開始向右運(yùn)動(dòng);

而區(qū)間右端點(diǎn)%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D-%5Cfrac%7B%5Cpi%20%7D%7B6%7D開始向右運(yùn)動(dòng);

這里就跟上一題有些區(qū)間,也是增加了難度的地方:上一題中兩端點(diǎn)是異向運(yùn)動(dòng)的(一個(gè)向左移另一個(gè)向右移);而這一題兩端點(diǎn)是同向運(yùn)動(dòng)的(這里兩個(gè)端點(diǎn)都向右移,且右端點(diǎn)移動(dòng)幅度更大,這是由于%5Cfrac%7B%5Cpi%20%7D%7B9%7D%3E%5Cfrac%7B%5Cpi%20%7D%7B10%7D)

因此這里就會(huì)出現(xiàn)多種情況需要分類討論,如:

區(qū)間(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)%0A%5Csubseteq%20(-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2C%20%5Cfrac%7B%5Cpi%20%7D%7B2%7D)


區(qū)間(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)%0A%5Csubseteq%20(%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2C%20%5Cfrac%7B3%5Cpi%20%7D%7B2%7D)


區(qū)間(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)%0A%5Csubseteq%20(%5Cfrac%7B3%5Cpi%20%7D%7B2%7D%2C%20%5Cfrac%7B5%5Cpi%20%7D%7B2%7D)

以此類推,需要進(jìn)行多輪的討論

而情況不是無數(shù)的,因?yàn)閮啥它c(diǎn)在向右運(yùn)動(dòng)的過程中,由于起點(diǎn)均為-%5Cfrac%7B%5Cpi%20%7D%7B6%7D,而右端點(diǎn)運(yùn)動(dòng)速度始終比左端點(diǎn)運(yùn)動(dòng)速度大(即%5Cfrac%7B%5Cpi%20%7D%7B9%7D%3E%5Cfrac%7B%5Cpi%20%7D%7B10%7D),因此區(qū)間長(zhǎng)度也在增大,當(dāng)%5Comega%20充分大時(shí),區(qū)間長(zhǎng)度>半個(gè)周期(即%5Cboxed%7B(%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)-(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)%3E%5Cpi%7D%20),那么隨后這個(gè)區(qū)間就無法再含于任何一個(gè)單調(diào)區(qū)間

也即上面方框框住的這個(gè)式子是其中一個(gè)必要條件

當(dāng)然這個(gè)也可以不需要解,后面的分類解不等式時(shí)會(huì)包含于此,下面的步驟才是關(guān)鍵的:

通過前面的數(shù)形結(jié)合分析知,第一種情況是(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)%0A%5Csubseteq%20(-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2C%20%5Cfrac%7B%5Cpi%20%7D%7B2%7D),那么這時(shí)就需要滿足:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cleqslant%20%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5C%5C%0A%5Cfrac%7B%5Cpi%20%7D%7B10%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cgeqslant%20-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%0A%5Cend%7Bmatrix%7D%5Cright.%0A%5Cstackrel%7B%5Comega%20%3E0%7D%7B%5CLongrightarrow%20%7D%20%5Comega%5Cin%20(0%2C6%5D


第二種情況是(%5Cfrac%7B%5Cpi%20%7D%7B10%7D%20%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D)%0A%5Csubseteq%20(%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2C%20%5Cfrac%7B3%5Cpi%20%7D%7B2%7D),那么這時(shí)就需要滿足:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cleqslant%20%5Cfrac%7B3%5Cpi%20%7D%7B2%7D%20%20%5C%5C%0A%5Cfrac%7B%5Cpi%20%7D%7B10%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cgeqslant%20%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%0A%5Cend%7Bmatrix%7D%5Cright.%0A%5CLongrightarrow%20%5Comega%5Cin%20%5B%5Cfrac%7B20%7D%7B3%7D%2C15%5D


...以此類推,我們發(fā)現(xiàn)解不等式的步驟是一樣的,因此我們可以先概括單調(diào)區(qū)間的一般形式:

(-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2Bk%5Cpi%20%2C%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2Bk%5Cpi%20%20)%2Ck%5Cin%20%5Cmathbb%7BN%7D

ps:至于k取負(fù)整數(shù)的情況就無需考慮了,因?yàn)閮啥它c(diǎn)都是由-%5Cfrac%7B%5Cpi%20%7D%7B6%7D開始向右運(yùn)動(dòng),因此在區(qū)間(-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%2C%5Cfrac%7B%5Cpi%20%7D%7B2%7D)左邊的區(qū)間就到不了無需考慮了

當(dāng)t%5Cin%20(-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2Bk%5Cpi%20%2C%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2Bk%5Cpi%20%20)%2Ck%5Cin%20%5Cmathbb%7BN%7D時(shí),分別需滿足:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A%5Cfrac%7B%5Cpi%20%7D%7B9%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cleqslant%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2Bk%5Cpi%20%5C%5C%0A%5Cfrac%7B%5Cpi%20%7D%7B10%7D%5Comega%20-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cgeqslant%20-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%2Bk%5Cpi%0A%5Cend%7Bmatrix%7D%5Cright.%0A%5CLongrightarrow%20%0A%7B%5Ccolor%7BBlue%7D%20%7B%5Comega%5Cin%20%5B-%5Cfrac%7B10%7D%7B3%7D%2B10k%20%20%2C6%2B9k%20%5D%7D%7D%20

也即取特定的k(讓區(qū)間屬于其中一個(gè)單調(diào)區(qū)間)時(shí)對(duì)應(yīng)的ω的取值范圍

要保證區(qū)間非空,則需-%5Cfrac%7B10%7D%7B3%7D%2B10k%20%3C6%2B9k%5CRightarrow%20%20k%3C%5Cfrac%7B28%7D%7B3%7D%20

該范圍內(nèi)的自然數(shù)解有:0,1,2,3,...,9

于是分別討論(將此時(shí)的k代入上面標(biāo)藍(lán)的那個(gè)區(qū)間中),最后再并起來,即有:

(1)當(dāng)k=0時(shí),%5Comega%5Cin%20(0%2C6%5D

(2)當(dāng)k=1時(shí),%5Comega%5Cin%5B%5Cfrac%7B20%7D%7B3%7D%2C15%5D

....

(10)當(dāng)k=9時(shí),%5Comega%5Cin%20%5B%5Cfrac%7B260%7D%7B3%7D%2C87%5D

綜上,ω的取值范圍為:

%5Cbbox%5B%23CFF%2C5px%5D%7B%5Cbegin%7Balign%7D%0A%26(0%2C6%5D%5Ccup%20%5B%5Cfrac%7B20%7D%7B3%7D%2C15%5D%5Ccup%5B%5Cfrac%7B50%7D%7B3%7D%2C24%5D%5Ccup%5B%5Cfrac%7B80%7D%7B3%7D%2C33%5D%5Ccup%5B%5Cfrac%7B110%7D%7B3%7D%2C42%5D%5C%5C%0A%26%5Ccup%5B%5Cfrac%7B140%7D%7B3%7D%2C51%5D%5Ccup%5B%5Cfrac%7B170%7D%7B3%7D%2C60%5D%5Ccup%5B%5Cfrac%7B200%7D%7B3%7D%2C69%5D%5Ccup%5B%5Cfrac%7B230%7D%7B3%7D%2C78%5D%5Ccup%5B%5Cfrac%7B260%7D%7B3%7D%2C87%5D%0A%5Cend%7Balign%7D%7D


這題出的情況有些多哈哈,怪出題時(shí)沒有"題德"(具體可以修改題目讓原區(qū)間間隔寬些,討論的次數(shù)就會(huì)少些),但掌握思路是必須的。


然后這里有必要給大家一些小提醒,就是上面篇幅較長(zhǎng),主觀上會(huì)讓人覺得沒有想看下去的欲望(bushi),而實(shí)際上的書寫過程就幾行而已。另一方面而言,這是對(duì)分析的詳細(xì)分析,帶讀者一步步進(jìn)行梳理,我覺得既然是講題,那么我認(rèn)為思路一步步講清楚是前提,在此前提下再進(jìn)行高度濃縮,因此“言簡(jiǎn)意賅”并不是很容易達(dá)到的程度


附上一道思考題:

這是以前一位網(wǎng)友問的一道難題,跟此類題相關(guān)所以拿出來分享了

結(jié)合上面的思路,這里就只給出關(guān)鍵步驟了:

t%3D%5Comega%20x%2B%5Cfrac%7B%5Cpi%20%7D%7B3%7D%20,則需y%3D%5Csin%20tt%5Cin%20%5B%5Cfrac%7B%5Cpi%20%7D%7B3%7D%5Comega%20%2B%5Cfrac%7B%5Cpi%20%7D%7B3%7D%2C%20%5Cpi%20%5Comega%20%2B%5Cfrac%7B%5Cpi%20%7D%7B3%7D%5D上有3個(gè)零點(diǎn)

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A0%2Bk%5Cpi%20%3C%5Cfrac%7B%5Cpi%20%7D%7B3%7D%5Comega%20%2B%20%5Cfrac%7B%5Cpi%20%7D%7B3%7D%5Cleqslant%20%5Cpi%2Bk%5Cpi%20%20%20%5C%5C%0A3%5Cpi%2Bk%5Cpi%20%5Cleqslant%5Cpi%20%5Comega%20%2B%20%5Cfrac%7B%5Cpi%20%7D%7B3%7D%3C4%5Cpi%20%2Bk%5Cpi%20%0A%5Cend%7Bmatrix%7D%5Cright.%2Ck%5Cin%20%5Cmathbb%7BN%7D

(即包含(k%2B1)%5Cpi%20%2C(k%2B2)%5Cpi%20%2C(k%2B3)%5Cpi%20)

ps:這里要留意不等號(hào)能否帶等的問題,要使得區(qū)間嚴(yán)格包含相鄰的3個(gè)零點(diǎn)(不少也不多)

解得:%5Cbbox%5B%23CFF%2C5px%5D%7B%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A3k-1%20%3C%5Comega%20%5Cleqslant%202%2B3k%20%20%20%5C%5C%0A%5Cfrac%7B8%7D%7B3%7D%2Bk%20%5Cleqslant%20%5Comega%3C%5Cfrac%7B11%7D%7B3%7D%20%2Bk%0A%5Cend%7Bmatrix%7D%5Cright.%7D

要讓其解集非空(即二者有交集),則需:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A3k-1%3C%5Cfrac%7B11%7D%7B3%7D%2Bk%20%20%5C%5C%0A2%2B3k%5Cgeqslant%20%5Cfrac%7B8%7D%7B3%7D%20%2Bk%0A%5Cend%7Bmatrix%7D%5Cright.%0A%5CRightarrow%20%0A%5Cfrac%7B1%7D%7B3%7D%20%5Cleqslant%20k%3C%5Cfrac%7B7%7D%7B3%7D%20

此范圍內(nèi)的自然數(shù)解有:k=1,2

當(dāng)k=1時(shí),解集為:%5Cfrac%7B11%7D%7B3%7D%20%5Cleqslant%20%5Comega%20%3C%5Cfrac%7B14%7D%7B3%7D%20

當(dāng)k=2時(shí),解集為:5%20%3C%5Comega%20%3C%5Cfrac%7B17%7D%7B3%7D%20

綜上,ω的取值范圍為:%5Cbbox%5B%23CFF%2C5px%5D%7B%5B%5Cfrac%7B11%7D%7B3%7D%20%2C%5Cfrac%7B14%7D%7B3%7D%20)%5Ccup%20(5%2C%5Cfrac%7B17%7D%7B3%7D%20)%7D

故選C

這是在三角函數(shù)小題里比較難的一道題了,但如果嚴(yán)格按上面的分析流程走,每一步都認(rèn)真完成也能完美地做出來。我認(rèn)為這類題分析的關(guān)鍵在于畫出整體圖后對(duì)區(qū)間端點(diǎn)的討論(要以動(dòng)態(tài)思想去分析區(qū)間的變化(端點(diǎn)左移還是右移))

正如數(shù)學(xué)家華羅庚所言:"數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔離分家萬事休。"




對(duì)近期做的幾道題的點(diǎn)評(píng)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
即墨市| 五峰| 区。| 西乌| 鹤岗市| 义乌市| 平潭县| 平乐县| 北海市| 马鞍山市| 龙口市| 大连市| 塔河县| 泰宁县| 澄迈县| 芮城县| 博湖县| 宁南县| 冷水江市| 犍为县| 博爱县| 昌都县| 花莲县| 龙州县| 长岭县| 汶川县| 舒城县| 白银市| 宝丰县| 科技| 博白县| 久治县| 平舆县| 新竹县| 郎溪县| 凤阳县| 天全县| 航空| 青浦区| 广水市| 望谟县|