最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

自然數(shù)的等冪和——伯努利數(shù)

2021-12-11 10:03 作者:子瞻Louis  | 我要投稿

高斯幼年時的老師為了刁難學(xué)生,在黑板上寫下了這個式子

1%2B2%2B3%2B%E2%80%A6%2B100%3D%EF%BC%9F

這項(xiàng)麻煩的工作讓全班同學(xué)都在為它忙著,但此時高斯脫口而出了答案,等于5050,讓全班同學(xué)都驚呆了

這是一個廣為流傳的故事,經(jīng)過多次修改后產(chǎn)生了許多版本,但事實(shí)上沒人知道高斯當(dāng)時到底是用的什么方法,

不過我們今天不僅僅只解決這一個式子

其實(shí)這個故事之前有一個小插曲,17世紀(jì)時雅各布伯努利(Jacob Bernoulli)他的《猜度術(shù)》中說他能發(fā)現(xiàn)1到1000的十次方之和,這可以在七分半內(nèi)解決,最后的結(jié)果是91409924241424243424241924242500

這時你也許會想:三十二位數(shù),什么鬼?七分半!手算?

當(dāng)然不可能是手算的,為了弄清楚他的方法,我們進(jìn)入今天的主題

自然數(shù)等冪和

首先我們考慮S_1(n)%3D1%2B2%2B%E2%80%A6%2Bn

找到它的通項(xiàng),很簡單,將S_1(n)重新排列

S_1(n)%3Dn%2B(n-1)%2B%E2%80%A6%2B1

S_1(n)%3D1%2B2%2B%E2%80%A6%2Bn

兩式相加,其中每一項(xiàng)都等于n+1,且一共n項(xiàng),即

2S_1(n)%3Dn(n%2B1)%5CRightarrow%20S_1(n)%3D%5Cfrac12n(n%2B1)

接下來提升難度

S_%7B2%7D(n)%3D1%5E2%2B2%5E2%2B3%5E2%2B%E2%80%A6%2Bn%5E2

要找到它的通項(xiàng),乍一看有些不知所措,不過我們注意到一次冪的和通項(xiàng)為二次的多項(xiàng)式,不妨從三次方來考慮:

x%5E3-(x-1)%5E3

將后面的括號展開

x%5E3-(x-1)%5E3%3Dx%5E3-x%5E3%2B3x%5E2-3x%2B1

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?%3D3x%5E2-3x%2B1

對x從1加到n,上式變?yōu)?/p>

n%5E3%3D3S_2(n)-3S_1(n)%2B1

根據(jù)上面的結(jié)果就能得到

S_2(n)%3D%5Cfrac13n%5E3%2B%5Cfrac12n%5E2%2B%5Cfrac16n%3D%5Cfrac16n(n%2B1)(2n%2B1)

接下來難度繼續(xù)增加,

S_k(n)%3D1%5Ek%2B2%5Ek%2B%E2%80%A6%2Bn%5Ek%3D%5Csum_%7Bu%3D1%7D%5E%7Bn%7Du%5Ek

沿用二次冪的思路,將

x%5E%7Bk%2B1%7D-(x-1)%5E%7Bk%2B1%7D

中的括號用牛頓二項(xiàng)式定理展開

x%5E%7Bk%2B1%7D-(x-1)%5E%7Bk%2B1%7D%3D%5Csum_%7Bv%3D0%7D%5E%7Bk%7D%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20v%20%5Cend%7Barray%7D%20%5Cright)(-1)%5E%7Bk-v%7Dx%5Ev

其中%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20v%20%5Cend%7Barray%7D%20%5Cright)%3D%5Cfrac%7B(k%2B1)!%7D%7Bv!(k%2B1-v)!%7D二項(xiàng)式系數(shù)

對x從1加到n,左側(cè)的差分就變?yōu)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=n%5E%7Bk%2B1%7D" alt="n%5E%7Bk%2B1%7D">,而右邊則可交換求和次序,上式變?yōu)?/p>

n%5E%7Bk%2B1%7D%3D%5Csum_%7Bv%3D0%7D%5E%7Bk%7D%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20v%20%5Cend%7Barray%7D%20%5Cright)(-1)%5E%7Bk-v%7DS_v(n)

于是,我們可以得到自然數(shù)等冪和的遞推關(guān)系式

S_k(n)%3D%5Cfrac1%7Bk%2B1%7Dn%5E%7Bk%2B1%7D%2B%5Csum_%7Bv%3D0%7D%5E%7Bk-1%7D%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%20%5C%5C%20v%20%5Cend%7Barray%7D%20%5Cright)%5Cfrac%7B(-1)%5E%7Bk-v%2B1%7D%7D%7Bk-v%2B1%7DS_v(n)

伯努利數(shù)

由上可知前n個自然數(shù)的k次冪和的通項(xiàng)為一k+1次多項(xiàng)式

不過這個遞推表達(dá)式有些復(fù)雜了,于是我們來試著簡化它一下

不妨來看一看這些多項(xiàng)式中有沒有什么規(guī)律,這里我已經(jīng)計算了S_0(n)S_7(n)

S_0(n)%3Dn

S_1(n)%3D%5Cfrac12n%5E2%2B%5Ccolor%7Bred%7D%7B%5Cfrac12n%7D

S_2(n)%3D%5Cfrac13n%5E3%2B%5Ccolor%7Bred%7D%7B%5Cfrac12n%5E2%7D%2B%5Cfrac16n

S_3(n)%3D%5Cfrac14n%5E4%2B%5Ccolor%7Bred%7D%7B%5Cfrac12n%5E3%7D%2B%5Cfrac14n%5E2%2B%5Ccolor%7Bred%7D%7B0n%7D

S_4(n)%3D%5Cfrac15n%5E5%2B%5Ccolor%7Bred%7D%7B%5Cfrac12n%5E4%7D%2B%5Cfrac13n%5E3%2B%5Ccolor%7Bred%7D%7B0n%7D-%5Cfrac1%7B30%7Dn

S_5(n)%3D%5Cfrac16n%5E6%2B%5Ccolor%7Bred%7D%7B%5Cfrac12n%5E5%7D%2B%5Cfrac5%7B12%7Dn%5E4%2B%5Ccolor%7Bred%7D%7B0n%5E3%7D-%5Cfrac1%7B12%7Dn%5E2%2B%5Ccolor%7Bred%7D%7B0n%7D

S_6(n)%3D%5Cfrac17n%5E7%2B%5Ccolor%7Bred%7D%7B%5Cfrac12n%5E6%7D%2B%5Cfrac12n%5E5%2B%5Ccolor%7Bred%7D%7B0n%5E4%7D-%5Cfrac16n%5E3%2B%5Ccolor%7Bred%7D%7B0n%5E2%7D%2B%5Cfrac1%7B42%7Dn

S_7(n)%3D%5Cfrac18n%5E8%2B%5Ccolor%7Bred%7D%7B%5Cfrac12n%5E7%7D%2B%5Cfrac7%7B12%7Dn%5E6%2B%5Ccolor%7Bred%7D%7B0n%5E5%7D-%5Cfrac7%7B24%7Dn%5E4%2B%5Ccolor%7Bred%7D%7B0n%5E3%7D%2B%5Cfrac1%7B12%7Dn%5E2%2B%5Ccolor%7Bred%7D%7B0n%7D

以降冪次排列,當(dāng)中第二列的系數(shù)%5Cfrac12和后面偶數(shù)列的系數(shù)0格外顯眼,于是我將它標(biāo)上了紅色

首先由前面的結(jié)論我們知道S_k(n)最高次項(xiàng)的系數(shù)為k%2B1,又大概知道了所有偶數(shù)列的規(guī)律,接下來看第三列,當(dāng)中%5Cfrac5%7B12%7D%2C%5Cfrac7%7B12%7D引起了我們注意,于是我們發(fā)現(xiàn)似乎S_k(n)第三列系數(shù)的規(guī)律是%5Cfrac%20k%7B12%7D,但其他列的規(guī)律就有點(diǎn)不好找了,那么我們來看看Bernoulli的想法吧

Bernoulli猜測自然數(shù)等冪和按降次冪排列的第n列取決于該列第一個數(shù),后來人們將這些數(shù)命名為伯努利數(shù)(Bernoulli?numbers),這里將第n個伯努利數(shù)記為?%5Cbeta_n?,且?%5Cbeta_0%3D1

嗯,這跟我們發(fā)現(xiàn)的規(guī)律有一丟丟相似,下面我們就從伯努利的思路出發(fā)吧

首先我們應(yīng)該找出一個能夠計算伯努利數(shù)比較方便的式子,根據(jù)

n%5E%7Bk%2B1%7D%3D%5Csum_%7Bu%3D0%7D%5E%7Bk%7D%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20u%20%5Cend%7Barray%7D%20%5Cright)(-1)%5E%7Bk-u%7DS_u(n)

對n取導(dǎo)數(shù),可以得到

kn%5E%7Bk%7D%3D%5Csum_%7Bu%3D0%7D%5E%7Bk%7D%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20u%20%5Cend%7Barray%7D%20%5Cright)(-1)%5E%7Bk-u%7DS_u'(n)

這顯然是一個十分弱智的行為,但如果將n=0代入,S_u'(0)其實(shí)就是第u個伯努利數(shù)

%5Csum_%7Bu%3D0%7D%5E%7Bk%7D%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20u%20%5Cend%7Barray%7D%20%5Cright)(-1)%5E%7Bk-u%7D%5Cbeta_u%3D0%20

%5CRightarrow%20%5Csum_%7Bn%3D0%7D%5E%7Bk%7D%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20n%20%5Cend%7Barray%7D%20%5Cright)(-1)%5E%7Bn%7D%5Cbeta_n%3D0

再根據(jù)%5Cbeta_0%3D1就能得到伯努利數(shù)的一種計算方法了

有了伯努利數(shù)的計算方法,就可以計算前幾個伯努利數(shù)了,分別是

%5Cbeta_1%3D%5Cfrac12%2C%5Cbeta_2%3D%5Cfrac16%2C%5Cbeta_3%3D0%2C%5Cbeta_4%3D-%5Cfrac1%7B30%7D%2C%5Cbeta_5%3D0%EF%BC%8C

%5Cbeta_6%3D%5Cfrac1%7B42%7D%2C%5Cbeta_7%3D0%2C%5Cbeta_8%3D-%5Cfrac1%7B30%7D%2C%5Cbeta_9%3D0%2C%5Cbeta_%7B10%7D%3D%5Cfrac5%7B66%7D

對上式求“高階導(dǎo)”并代入n=0亦能得到自然數(shù)等冪和的通項(xiàng)中其他系數(shù)間的關(guān)系

接下來我們回歸主題——等冪和

引入?S_k(n)?的生成函數(shù)

F(n%3Bx)%3D%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7DS_k(n)%5Cfrac%7Bx%5Ek%7D%7Bk!%7D

由于S_k(n)的遞推關(guān)系比較復(fù)雜,我們直接將其定義代入

F(n%3Bx)%3D%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%5Csum_%7Bm%3D1%7D%5Enm%5Ek%5Cfrac%7Bx%5Ek%7D%7Bk!%7D%3D%5Csum_%7Bm%3D1%7D%5En%5Ccolor%7Bgreen%7D%7B%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7B(mx)%5Ek%7D%7Bk!%7D%7D

注意到其中綠色部分e%5E%7Bmx%7D零點(diǎn)處的Taylor級數(shù)展開,再根據(jù)等比數(shù)列求和公式,有

F(n%3Bx)%3D%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7DS_k(n)%5Cfrac%7Bx%5Ek%7D%7Bk!%7D%3De%5Ex%5Cfrac%7Be%5E%7Bnx%7D-1%7D%7Be%5Ex-1%7D

這樣就能用F(n%3Bx)來計算S_k(n)了:

S_k(n)%3D%5Clim_%7Bx%5Cto0%7D%5Cfrac%7Bd%5Ek%7D%7Bdx%5Ek%7DF(n%3Bx)%3D%5Clim_%7Bx%5Cto0%7D%5Cfrac%7Bd%5Ek%7D%7Bdx%5Ek%7D%5Cleft(e%5Ex%5Cfrac%7Be%5E%7Bnx%7D-1%7D%7Be%5Ex-1%7D%5Cright)

當(dāng)然,對這個分式求導(dǎo)是個麻煩的工作,我們來尋找一種更簡便的方法

在生成函數(shù)中對n取“導(dǎo)數(shù)”,并代入n=0

%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20n%7DF(0%3Bx)%3D%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7DS_k'(0)%5Cfrac%7Bx%5Ek%7D%7Bk!%7D%3D%5Ccolor%7Bblue%7D%7B%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%5Cbeta_k%5Cfrac%7Bx%5Ek%7D%7Bk!%7D%3D%5Cfrac%7Bxe%5Ex%7D%7Be%5Ex-1%7D%7D

于是我們又得到了伯努利數(shù)的生成函數(shù)定義,將它代入到S_k(n)生成函數(shù)

F(n%3Bx)%3De%5Ex%5Cfrac%7Be%5E%7Bnx%7D-1%7D%7Be%5Ex-1%7D%3D%5Cfrac%7Be%5E%7Bnx%7D-1%7D%7Bx%7D%5Ccolor%7Bblue%7D%7B%5Cfrac%7Bxe%5Ex%7D%7Be%5Ex-1%7D%7D%3D%5Cfrac%7Be%5E%7Bnx%7D-1%7D%7Bx%7D%5Ccolor%7Bblue%7D%7B%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%5Cbeta_k%5Cfrac%7Bx%5Ek%7D%7Bk!%7D%7D

再將%5Cfrac%7Be%5E%7Bnx%7D-1%7D%7Bx%7D在零點(diǎn)處展開為Taylor級數(shù)

F(n%3Bx)%3D%5Cleft(%5Csum_%7Br%3D0%7D%5E%5Cinfty%20n%5E%7Br%2B1%7D%5Cfrac%7Bx%5Er%7D%7B(r%2B1)!%7D%5Cright)%5Cleft(%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%5Cbeta_k%5Cfrac%7Bx%5Ek%7D%7Bk!%7D%5Cright)

柯西乘積公式,可得

%5Cbegin%7Baligned%7DF(n%3Bx)%26%3D%5Csum_%7Bk%3D0%7D%5E%5Cinfty%20%5Cleft(%5Csum_%7Br%3D0%7D%5Ek%5Cfrac%7B%5Cbeta_rn%5E%7Bk-r%2B1%7D%7D%7B(k%2B1-r)!r!%7D%5Cright)x%5Ek%5C%5C%26%3D%5Csum_%7Bk%3D0%7D%5E%5Cinfty%20%5Ccolor%7Bred%7D%7B%5Cleft(%5Csum_%7Br%3D0%7D%5Ek%5Cfrac%7Bk!%5Cbeta_rn%5E%7Bk-r%2B1%7D%7D%7B(k%2B1-r)!r!%7D%5Cright)%7D%5Cfrac%7Bx%5Ek%7D%7Bk!%7D%5Cend%7Baligned%7D

對比F(n%3Bx)的定義中的系數(shù),有

S_k(n)%3D%5Csum_%7Br%3D0%7D%5Ek%5Cfrac%7Bk!%5Cbeta_rn%5E%7Bk-r%2B1%7D%7D%7B(k%2B1-r)!r!%7D%3D%5Cfrac1%7Bk%2B1%7D%5Csum_%7Br%3D0%7D%5Ek%5Cfrac%7B(k%2B1)!%5Cbeta_rn%5E%7Bk-r%2B1%7D%7D%7B(k%2B1-r)!r!%7D

%5CRightarrow%20S_k(n)%3D%5Cfrac1%7Bk%2B1%7D%5Csum_%7Br%3D0%7D%5Ek%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20r%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_rn%5E%7Bk-r%2B1%7D

最終,我們將二維的自然數(shù)等冪和用一維的伯努利數(shù)表示了出來,實(shí)現(xiàn)了“降維打擊”

第二類伯努利數(shù)

前面所介紹的是第一類伯努利數(shù)(也叫“原始的伯努利數(shù)”)

在上面的公式中,令n=1,因S_k(1)%3D1,有

%5Csum_%7Br%3D0%7D%5E%7Bk%2B1%7D%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20r%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_r%3D1%2B%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%201%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_1%2B%E2%80%A6%2B%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20k%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_k%3Dk%2B1

取k為任一大于1的奇數(shù),又有

%5Csum_%7Bn%3D0%7D%5E%7Bk%7D%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20n%20%5Cend%7Barray%7D%20%5Cright)(-1)%5E%7Bn%7D%5Cbeta_n%3D1-%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%201%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_1%2B%E2%80%A6-%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20k%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_k%3D0

將兩式作差,偶數(shù)項(xiàng)就全被減掉了,

2%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%201%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_1%2B2%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%203%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_3%2B%E2%80%A6%2B2%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20k%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_k%3Dk%2B1

我們已經(jīng)計算了%5Cbeta_1%3D%5Cfrac12,則

2%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%201%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_1%3D%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%201%20%5Cend%7Barray%7D%20%5Cright)%3Dk%2B1

代入到上式中,

%5Ccolor%7Bred%7D%7Bk%2B1%7D%2B2%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%203%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_3%2B%E2%80%A6%2B2%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20k%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_k%3D%5Ccolor%7Bred%7D%7Bk%2B1%7D

%5CRightarrow2%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%203%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_3%2B%E2%80%A6%2B2%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%20k%2B1%20%5C%5C%20k%20%5Cend%7Barray%7D%20%5Cright)%5Cbeta_k%3D0

因?yàn)樗?strong>二項(xiàng)式系數(shù)均不為零,又根據(jù)k可取任意大于1的奇數(shù),我們得到

%5Cforall%20n%5Cgeq%201%2C%5Cbeta_%7B2n%2B1%7D%3D0

根據(jù)伯努利數(shù)的生成函數(shù)定義

%5Cfrac%7Bxe%5Ex%7D%7Be%5Ex-1%7D%3D%5Cfrac%7Bx%7D%7B1-e%5E%7B-x%7D%7D%3D%5Cfrac%7B-x%7D%7Be%5E%7B-x%7D-1%7D%3D%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%5Cbeta_k%5Cfrac%7Bx%5Ek%7D%7Bk!%7D

-x替換x,

%5Cfrac%20x%7Be%5Ex-1%7D%3D%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D(-1)%5Ek%5Cbeta_k%5Cfrac%7Bx%5Ek%7D%7Bk!%7D

當(dāng)中所有偶數(shù)項(xiàng)均與伯努利數(shù)相同,而又由于伯努利數(shù)中除1外所有奇數(shù)項(xiàng)都等于0,所以其實(shí)%5Cfrac%20x%7Be%5Ex-1%7D%5Cfrac%7Bxe%5Ex%7D%7Be%5Ex-1%7DMaclaurin級數(shù)展開中只有一次項(xiàng)系數(shù)不同

B_k%3A%3D(-1)%5Ek%5Cbeta_k就是第二類伯努利數(shù),只需在第一類伯努利數(shù)中將B_1換成-%5Cfrac12就可以得到,雖然實(shí)際上它跟第一類伯努利數(shù)就只有一個數(shù)的區(qū)別,但這一個數(shù)的區(qū)別卻使第二類伯努利數(shù)在應(yīng)用中方便許多,因此許多地方用的都是第二類伯努利數(shù)

本期只介紹了Bernoulli numbers的起源——等冪和問題,其實(shí)這只是它的應(yīng)用中的冰山一角,它與Riemann?Zeta函數(shù)偶數(shù)、負(fù)奇數(shù)處的值密切相關(guān),正切函數(shù)的麥克勞林展開中也有它,此外還有許多地方都能看到它的影子

Bernoulli numbers因此視為數(shù)學(xué)中最重要的數(shù)列之一

雅各布 伯努利(Jocob Bernoulli)



自然數(shù)的等冪和——伯努利數(shù)的評論 (共 條)

分享到微博請遵守國家法律
偏关县| 五大连池市| 防城港市| 阿拉善左旗| 榆林市| 类乌齐县| 鸡西市| 吴旗县| 娄烦县| 阿鲁科尔沁旗| 侯马市| 苍南县| 长顺县| 安岳县| 安西县| 遂昌县| 晴隆县| 革吉县| 若羌县| 屏边| 疏附县| 太保市| 夏河县| 马关县| 大姚县| 什邡市| 淮阳县| 泰来县| 宿州市| 玉山县| 云梦县| 彰武县| 天峻县| 紫金县| 溧阳市| 天台县| 宜城市| 五寨县| 苍南县| 长垣县| 沿河|