PyTorch Tutorial 12 - Activation Func...

教程Python代碼如下:
import torch
import torch.nn as nn
import torch.nn.functional as F
# option 1 (create nn modules)
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size):
super(NeuralNet, self).__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(hidden_size, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.linear1(x)
out = self.relu(out)
out = self.linear2(out)
out = self.sigmoid(out)
return out
# option 2 (use activation functions directly in forward pass)
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size):
super(NeuralNet, self).__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.linear2 = nn.Linear(hidden_size, 1)
def forward(self, x):
out = torch.relu(self.linear1(x))
out = torch.sigmoid(self.linear2(out))
return out