最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

看到一道有趣的題目

2022-09-29 00:17 作者:我恨PDN定理  | 我要投稿

今天在學(xué)習(xí)途中,看到一道有趣的題目,計算菲涅耳(Fresnel)積分,即:

%5Cint_0%5E%7B%2B%5Cinfty%7Dcosx%5E2%5C%2Cdx%5C%3B%E5%8F%8A%5C%3B%5Cint_0%5E%7B%2B%5Cinfty%7Dsinx%5E2%5C%2Cdx

證明方法選自《復(fù)變函數(shù)論》第四版,高等教育出版社

首先引出一個引理,泊松(Poisson)積分,即:%5Cint_0%5E%7B%2B%5Cinfty%7De%5E%7B-t%5E2%7D%5C%2Cdt%3D%5Cfrac%7B%5Csqrt%7B%5Cpi%7D%7D%7B2%7D

這個積分的證明不難,大略寫一下:

%E8%AE%B0%5C%3BI%3D%5Cint_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%7De%5E%7B-x%5E2%7D%5C%2Cdx%3D%5Cint_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%7De%5E%7B-y%5E2%7D%5C%2Cdy

%5Cbegin%7Bsplit%7D%0AI%5E2%20%26%3D%20%5Cint_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%7De%5E%7B-x%5E2%7D%5C%2Cdx%5Ccdot%5Cint_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%7De%5E%7B-y%5E2%7D%5C%2Cdy%20%5C%5C%0A%26%3D%5Cint_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%7Ddx%5Cint_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%7De%5E%7B-(x%5E2%2By%5E2)%7D%5C%2Cdy%20%5C%5C%0A%26%3D%5Ciint_De%5E%7B-(x%5E2%2By%5E2)%7D%5C%2Cd%5Csigma%5C%5C%0A%26%3D%5Cint_0%5E%7B2%5Cpi%7Dd%5Ctheta%20%5Cint_0%5E%7B%2B%5Cinfty%7De%5E%7B-%5Crho%5E2%7D%5Crho%20%5C%2Cd%5Crho%5C%5C%0A%26%3D2%5Cpi%5Ccdot%5Cbig(-%5Cfrac%7B1%7D%7B2%7D%5Cbig)%5Cint_0%5E%7B%2B%5Cinfty%7De%5E%7B-%5Crho%5E2%7Dd%5C%2C(-%5Crho%5E2%0A)%5C%5C%0A%26%3D%5Cpi%0A%5Cend%7Bsplit%7D

%5Ctherefore%20%5C%3BI%3D%5Csqrt%7B%5Cpi%7D

%5Ctherefore%20%5Cint_0%5E%7B%2B%5Cinfty%7De%5E%7B-t%5E2%7D%5C%2Cdt%3D%5Cfrac%7B%5Csqrt%7B%5Cpi%7D%7D%7B2%7D

下面我們來計算菲涅耳積分:

構(gòu)造輔助函數(shù)f(z)%3De%5E%7B-z%5E2%7D,顯然它為整函數(shù)(即它在整個z平面上解析)

考慮輔助積分路徑C

其中,記半徑為R%0A(充分大),弧段為%5CGamma%20,則:

%5Cbegin%7Bsplit%7D%0A0%20%26%3D%5Cint_C%20e%5E%7B-z%5E2%7Ddz%20%5C%5C%0A%26%3D%5Cint_0%5ERe%5E%7B-x%5E2%7Ddx%2B%5Cint_%5CGamma%20e%5E%7B-z%5E2%7Ddz%2B%5Cint_R%5E0e%5E%7B-x%5E2e%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7Di%7D%7De%5E%7B%5Cfrac%7B%5Cpi%7D%7B4%7Di%7Ddx%0A%5Cend%7Bsplit%7D

然而:

%5Cbegin%7Bsplit%7D%0A%5CBigg%5Cvert%20%5Cint_%5CGamma%20e%5E%7B-z%5E2%7Ddz%20%5CBigg%5Cvert%20%26%3D%5CBigg%5Cvert%20%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%20e%5E%7B-R%5E2(%5Ccos2%5Cvarphi%20%2Bi%5Csin2%5Cvarphi)%7DiRe%5E%7Bi%5Cvarphi%7D%5C%2Cd%5Cvarphi%20%5CBigg%5Cvert%20%5C%5C%0A%26%5Cleqslant%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%20e%5E%7B-R%5E2%5Ccos2%5Cvarphi%7DR%5C%2Cd%5Cvarphi%5C%5C%0A%26%5Cxlongequal%7B2%5Cvarphi%3D%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Ctheta%7D%5Cfrac%7BR%7D%7B2%7D%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20e%5E%7B-R%5E2%5Csin%5Ctheta%7Dd%5Ctheta%0A%5Cend%7Bsplit%7D

由約爾當(dāng)(Jordan)不等式:%5Cfrac%7B2x%7D%7B%5Cpi%7D%5Cleqslant%5Csin%20x,則:

%5Cbegin%7Bsplit%7D%0A%5CBigg%5Cvert%20%5Cint_%5CGamma%20e%5E%7B-z%5E2%7Ddz%20%5CBigg%5Cvert%20%26%5Cleqslant%0A%5Cfrac%7BR%7D%7B2%7D%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20e%5E%7B-R%5E2%5Ccdot%5Cfrac%7B2%5Ctheta%7D%7B%5Cpi%7D%7Dd%5Ctheta%5C%5C%0A%26%3D-%5Cfrac%7BR%7D%7B2%7D%5Ccdot%20%5Cfrac%7B%5Cpi%7D%7B2R%5E2%7De%5E%7B-%5Cfrac%7B2R%5E2%7D%7B%5Cpi%7D%5Ctheta%7D%20%5Cbigg%5Cvert%20_%7B%5C%2C0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5C%5C%0A%26%3D%5Cfrac%7B%5Cpi%7D%7B4R%7D(1-e%5E%7B-R%5E2%7D)%0A%5Cend%7Bsplit%7D

%5Ctherefore%20R%5Crightarrow%2B%5Cinfty%5C%3B%2C%5C%3B%5CBigg%5Cvert%20%5Cint_%5CGamma%20e%5E%7B-z%5E2%7Ddz%20%5CBigg%5Cvert%5Crightarrow0

%5Ctherefore%20R%5Crightarrow%20%2B%5Cinfty%20%5C%3B%2C%5C%3B%5Cfrac%7B1%2Bi%7D%7B%5Csqrt2%7D%5Cint_0%5E%7B%2B%5Cinfty%7D(%5Ccos%20x%5E2-i%5Csin%20x%5E2)%5C%2Cdx%3D%5Cint_0%5E%7B%2B%5Cinfty%7De%5E%7B-x%5E2%7Ddx%3D%5Cfrac%7B%5Csqrt%7B%5Cpi%7D%7D%7B2%7D

%5Ctherefore%20%5Cint_0%5E%7B%2B%5Cinfty%7D(%5Ccos%20x%5E2-i%5Csin%20x%5E2)%5C%2Cdx%3D%5Cfrac%7B1%7D%7B2%7D%5Csqrt%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D(1-i)

比較實虛部系數(shù),則:

%5Cint_0%5E%7B%2B%5Cinfty%7Dcosx%5E2%5C%2Cdx%3D%5Cint_0%5E%7B%2B%5Cinfty%7Dsinx%5E2%5C%2Cdx%3D%5Csqrt%7B%5Cfrac%7B%5Cpi%7D%7B8%7D%7D%5Cquad%5Csquare

看到一道有趣的題目的評論 (共 條)

分享到微博請遵守國家法律
秦安县| 奇台县| 乌拉特后旗| 永安市| 冕宁县| 阿拉尔市| 平邑县| 涪陵区| 蒲城县| 湘乡市| 田东县| 潜江市| 岑溪市| 彰化市| 信丰县| 即墨市| 连云港市| 阿尔山市| 宜丰县| 鄂伦春自治旗| 长子县| 合肥市| 河曲县| 稷山县| 吴江市| 木里| 襄樊市| 军事| 玉溪市| 梁山县| 论坛| 汉寿县| 邵阳县| 外汇| 鹤岗市| 监利县| 自贡市| 黄浦区| 老河口市| 墨脱县| 衡水市|