最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊

微分幾何復(fù)習(xí)筆記(第二基本形式)(1)

2023-06-19 00:00 作者:iLune-  | 我要投稿

考完了,考的還不錯(cuò),傳個(gè)復(fù)習(xí)筆記??????????? 有些證明就不證了,反正也沒考到。前幾章比較簡單,雖然也有寫,看心情傳吧′?`


Definition and properties

Consider regular surface S,for any point?p%20%5Cin%20S,? the tangent space?T_p%0A(S)? is spanned by

%5C%7B%20%5Cmathbf%7Bx%7D_u%2C%20%5Cmathbf%7Bx%7D_v%20%5C%7D,then the unit normal vector is??%5Chat%7B%5Cmathbf%7BN%7D%7D%20(p)%20%3D%20%5Cfrac%7B%5Cmathbf%7Bx%7D_u%20%5Ctimes%20%5Cmathbf%7Bx%7D_v%7D%7B%7C%0A%5Cmathbf%7Bx%7D_u%20%5Ctimes%20%5Cmathbf%7Bx%7D_v%20%7C%7D%20(p).

That is, we have a differentiable map?%7B%5Cmathbf%7BN%7D%3A%7D%20%5Cmathbf%7Bx%7D%20(U)%0A%5Crightarrow%20%5Cmathbb%7BR%7D%5E3? that associates to each?p%20%5Cin%20%5Cmathbf%7Bx%7D%20(U)?

a unit normal vector??%5Chat%7B%5Cmathbf%7BN%7D%7D%20(p)%20%3D%20%5Cfrac%7B%5Cmathbf%7Bx%7D_u%20%5Ctimes%0A%5Cmathbf%7Bx%7D_v%7D%7B%7C%20%5Cmathbf%7Bx%7D_u%20%5Ctimes%20%5Cmathbf%7Bx%7D_v%20%7C%7D%20(p)%20.

1.1 Gauss map

Let S in?%5Cmathbb%7BR%7D%5E3 be a surface with an orientation?%5Cmathbf%7BN%7D.The map?%5Cmathbf%7BN%7D%3A%20S%20%5Crightarrow%20%5Cmathbb%7BR%7D%5E3? ?takes its values in the unit sphere?S%5E2?.

The Gauss map

hen, we have the Gauss map?%5Cmathbf%7BN%7D%3A%20S%20%5Crightarrow%20S%5E2 , which is differentiable.We can know that the direction of each N reserves after the Gauss map, which is just remove all normal vectors from the surface?S?to the unit sphere.

Also we get:?d%20N_p%20%3A%20T_p%20(S)%20%5Crightarrow%20T_p%20(S%20) .

Then we can consider the curve in?S%5E2 by the mapping?%5Cmathbf%7BN%7D?from the surface?S?that is?%5Cmathbf%7B%5Calpha%7D%20(t)%20%5Crightarrow%20%5Cmathbf%7BN%7D%20%5Ccirc%0A%5Cmathbf%7B%5Calpha%7D%20(t)%20%3D%20%5Cmathbf%7BN%7D%20(t)%20 in?%20S%5E2%20.

then the tengent vectors?%7B%5Calpha%7D'%20(t) are mapped to the sphere, that is?%5Cmathbf%7BN%7D'%20(%5Cmathbf%7B%5Calpha%7D%20(t))%20%3D%20d%20N_p%20(%5Cmathbf%7B%5Calpha%7D'%20(t))

Example 1:

Consider the unit sphere?S%5E2%3A%20%5C%7B%20x%5E2%20%2B%20y%5E2%20%2B%20z%5E2%20%3D%201%20%5C%7D?.A regular on?S%5E2?is given by?%5Cmathbf%7B%5Calpha%7D%20(t)%20%3D%20(x%20(t)%2C%20y%20(t)%2C%20z%20(t)), then?N%20%3D%20(-%20x%2C%20-%0Ay%2C%20-%20z).Therefore we obtain:d%20N_p%20(%5Cmathbf%7B%5Calpha%7D'%20(t))%20%3D%20(-%20x'%2C%20-%20y'%2C%20-%0Az')%3D-%20%5Cmathbf%7B%5Calpha%7D'%20(t)

Example 2:

Consider the cylinder, that is?%5C%7B%20x%2C%20y%2C%20z%20%5Cin%20%5Cmathbb%7BR%7D%5E3%2C%20x%5E2%20%2B%20y%5E2%20%3D%201%0A%5C%7D. The tangent vectors?%5Cmathbf%7Bw%7D%3D%20(x'%2C%20y'%2C%200)%2C%20%5Cmathbf%7Bv%7D%3D%20(0%2C%200%2C%0Az) ,the unit normal vector inward is?%5Cmathbf%7BN%7D%3D%20(-%20x%2C%20-%20y%2C%200).

Then we have?N'%20(t)%20%3D%20%5Cmathbf%7BN%7D%3D%20(-%20x'%2C%20-%20y'%2C%200).

By comparing with?%5Cmathbf%7Bw%7D and?%5Cmathbf%7Bv%7D, we find that:

d%5Cmathbf%7BN%7D%20(%5Cmathbf%7Bw%7D)%20%3D%20(-%20x'%2C%20-%20y'%2C%200)%20%3D%20-%20%5Cmathbf%7Bw%7D;?d%5Cmathbf%7BN%7D%20(%5Cmathbf%7Bv%7D)%20%3D%20(-%20x'%2C%20-%20y'%2C%200)%20%3D%200%20%5Cmathbf%7Bv%7D.

Therefore?d%5Cmathbf%7BN%7D? is of 2 eigen values?%5Cmathbf%7B%5Clambda%7D_1%20%3D%20-%201%2C%0A%5Cmathbf%7B%5Clambda%7D_2%20%3D%200.

It is suprising to discover that, the Gauss map maps the points from?S to?S%5E2, to with different shapes.Consider the plane?%5Cmathbf%7Bx%7D%20(x%2C%20y%2C%200) in?%5Cmathbb%7BR%7D%5E3, the normal vector is?(0%2C%200%2C%201),then the Gauss map of the plane is?N%20((x%2C%20y%2C%200))%3D(0%2C%200%2C%201)%20.That is, all the points in the plane?%5Cmathbf%7Bx%7D%20(x%2C%20y%2C%200)are mapped to the point?(0%2C%200%2C%201) on the unit sphere.


Consider the cylinder, that is?%5Cmathbf%7Bx%7D%20(x%2C%20y%2C%20z)?the normal vectors are?%5Cmathbf%7BN%7D%3D%20(%5Cpm%20x%2C%20%5Cpm%20y%2C%200) and?x%5E2%20%2B%20y%5E2%20%3D%201.Therefore we find that all points on the cylinder are mapped to the circle?x%5E2%20%2B%20y%5E2%20%3D%201?on the unit sphere.

1.2 Weingarten map

Actually the weingarten map is?W_p%20%3D%20-%20d%5Cmathbf%7BN%7D_p...

Let a regular curve?on?S%20%3A%5Cmathbf%7B%5Cgamma%7D%20(t)%20%3D%20(u%20(t)%2C%20v%20(t)), then by Gauss map we have?%5Cmathbf%7BN%7D((u%20(t)%2C%20v%20(t))).

Then?%5Cmathbf%7BN%7D'((u%20(t)%2C%20v%20(t)))%3Dd%20%5Cmathbf%7BN%7D%5Cmathbf%7B%5Cgamma%7D'%20(t)%20%3D%0Ad%5Cmathbf%7BN%7D%20(%5Cmathbf%7Bx%7D_u)%20u'%20%2B%20d%5Cmathbf%7BN%7D%20(%5Cmathbf%7Bx%7D_v)%20v'%20%3D%20N_u%20u'%20%2B%0AN_v%20v'.

In particular,?d%5Cmathbf%7BN%7D%20(%5Cmathbf%7Bx%7D_u)%20%3D%20N_u%3D-%5Cmathbf%7B%5Clambda%7D_1%0A%5Cmathbf%7Bx%7D_u%2C%20d%5Cmathbf%7BN%7D%20(%5Cmathbf%7Bx%7D_v)%20%3D%20N_v%20%3D%20-%5Cmathbf%7B%5Clambda%7D_2%0A%5Cmathbf%7Bx%7D_v, that is:

? ? ? ? ? ? ? ? ? ? ??d%5Cmathbf%7BN%7D_p%20%3D%5Ctext%7B%7D%20%5Cleft(%5Cbegin%7Barray%7D%7Bcc%7D%20-%5Cmathbf%7B%5Clambda%7D_1%20%26%200%5C%5C%0A%20%20%20%20%200%20%26%20-%5Cmathbf%7B%5Clambda%7D_2%0A%20%20%20%5Cend%7Barray%7D%5Cright)%2C%0A%0AW_p%20%3D%20%5Cleft(%5Cbegin%7Barray%7D%7Bcc%7D%0A%20%20%20%20%20%5Cmathbf%7B%5Clambda%7D_1%20%26%200%5C%5C%0A%20%20%20%20%200%20%26%20%5Cmathbf%7B%5Clambda%7D_2%0A%20%20%20%5Cend%7Barray%7D%5Cright)%20

Just know this concept is ok..

1.3 Self-adjoint linear map

The Weingarten map is self-adjoint, which is of the property:?%5Clangle%0Ad%5Cmathbf%7BN%7D_p%20(w_1)%2C%20w_2%20%5Crangle%20%3D%20%5Clangle%20w_1%2C%20d%5Cmathbf%7BN%7D_p%20(w_2)%0A%5Crangle.

Consider basis vector, we have:

%5Clangle%20d%5Cmathbf%7BN%7D_p%20(%5Cmathbf%7Bx%7D_u)%2C%0A%5Cmathbf%7Bx%7D_v%20%5Crangle%20%3D%20%5Clangle%20%5Cmathbf%7Bx%7D_u%2C%20d%5Cmathbf%7BN%7D_p%20(%5Cmathbf%7Bx%7D_v)%0A%5Crangle%20%5CRightarrow%20%5Clangle%20N_u%2C%20%5Cmathbf%7Bx%7D_v%20%5Crangle%20%3D%20%5Clangle%20%5Cmathbf%7Bx%7D_u%2C%0AN_v%20%5Crangle.

Proof:

Because?%5Clangle%20N%2C%20x_u%20%5Crangle%20%3D%200%3B%0A%5Clangle%20N_u%2C%20x_u%20%5Crangle%20%2B%20%5Clangle%0AN%2C%20x_%7Bu%20u%7D%20%5Crangle%20%3D%200%20%3B%20%5Clangle%20N_v%2C%20x_v%20%5Crangle%20%2B%20%5Clangle%20N%2C%20x_%7Bv%20v%7D%20%5Crangle%0A%3D%200%20%3B%20%5Clangle%20N_v%2C%20x_u%20%5Crangle%20%2B%20%5Clangle%20N%2C%20x_%7Bu%20v%7D%20%5Crangle%20%3D%200%3B

%5Clangle%20N_u%2C%20x_v%20%5Crangle%20%2B%20%5Clangle%20N%2C%20x_%7Bv%20u%7D%20%5Crangle%20%3D%200;

thus we have:

? ? ? ? ? ? ? ? ? ? ? ? ? ?%20%5Clangle%20N_v%2C%20x_u%20%5Crangle%20%3D%20-%20%5Clangle%20N%2C%20x_%7Bu%20v%7D%20%5Crangle%20%3D%20-%20%5Clangle%20N%2C%0A%20%20%20x_%7Bv%20u%7D%20%5Crangle%20%3D%20%5Clangle%20N_u%2C%20x_v%20%5Crangle%20

Hence Weingarten map is self-adjoint.

In the proof above, we also descover:

%5Clangle%20-%20d%5Cmathbf%7BN%7D_p%20(v)%2C%20v%20%5Crangle

The 2 equations above are much more important later?. . .?



Latex 公式在這里居然算圖片,不能超過100條....分開更算了







微分幾何復(fù)習(xí)筆記(第二基本形式)(1)的評論 (共 條)

分享到微博請遵守國家法律
通辽市| 梅河口市| 梁平县| 湘潭县| 西峡县| 五莲县| 广饶县| 霞浦县| 揭东县| 洪泽县| 金秀| 瓮安县| 盐边县| 灵璧县| 科技| 四会市| 闵行区| 旅游| 汉源县| 临江市| 德江县| 巢湖市| 刚察县| 金乡县| 融水| 原平市| 乐昌市| 延吉市| 三原县| 扬州市| 江门市| 大冶市| 石河子市| 禹城市| 敦煌市| 杭州市| 汝城县| 同德县| 冀州市| 方城县| 邻水|