最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網 會員登陸 & 注冊

Prime dream(7)——Riemann Zeta's解析延拓與函數方程

2022-04-22 23:49 作者:子瞻Louis  | 我要投稿

本系列文集《Prime dream》

其他文集《數學分析》《雜文集》

引言

接著上一期,由Perron公式,可以得到Tchebyshev?psi函數的一個漸進式:

%5Cpsi(x)%3D%5Cfrac1%7B2%5Cpi%20i%7D%5Cint_%7B%5Ckappa-iT%7D%5E%7B%5Ckappa%2BiT%7D%5Cleft%5B-%5Cfrac%7B%5Czeta'%7D%5Czeta(s)%5Cright%5D%5Ccdot%5Cfrac%7Bx%5Es%7Ds%5Cmathrm%20ds%2B%5Cmathcal%20O%5Cleft(%5Cfrac%7Bx%5Clog%5E2x%7DT%5Cright)

其中?x%5Cge1%2C%5Ckappa%3D1%2B%5Cfrac1%7B%5Clog%20x%7D ,以及?T%5Cge1?是足夠大的參數,對于主項的積分,我們的想法是利用好被積函數在?s%3D1?處的極點,通過留數定理解決,然而這需要構造一個包圍這個極點的圍道,但由于被積函數

-%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5CLambda(n)%7D%7Bn%5Es%7D

的右式僅僅在?%5CRe(s)%3E1?時收斂,因此不能直接將上式代入圍道積分中,那不妨考慮將它的定義域擴大,即將它解析延拓后再代到積分中,而對它的解析延拓可以直接從?%5Czeta(s)?入手,通過取對數導數便可達到目的。

往期專欄中,我們已經知道?%5Czeta-函數可以解析延拓到平面?%5CRe(s)%3E0%2Cs%E2%89%A01?上,本期的內容是將它解析延拓至平面?%5CRe(s)%5Cle0?上。

一個函數

首先讓我們引入一個函數:

%5Ctheta(a%2Cz)%3A%3D%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-a(n%2Bz)%5E2%7D

令?f(t)%3De%5E%7B-at%5E2%7D?,則

?%5Ctheta(a%2Cz)%3D%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%20f(n%2Bz)?

再令?%5Chat%20f?為?f?Fourier變換,并根據Poisson求和公式,便有

%5Ctheta(a%2Cz)%3D%5Csum_%7Bm%3D-%5Cinfty%7D%5E%5Cinfty%20%5Chat%20f(m)e%5E%7B2%5Cpi%20imz%7D

接下來就是要解決?%5Chat%20f?了:

%5Cbegin%7Baligned%7D%5Chat%20f(%5Cxi)%26%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-at%5E2-2%5Cpi%20i%5Cxi%20t%7D%5Cmathrm%20dt%5C%5C%26%3D%5Cfrac1%7B%5Csqrt%20a%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-t%5E2-%5Cfrac%7B2%5Cpi%20i%5Cxi%7D%7B%5Csqrt%20a%7Dt%7D%5Cmathrm%20dt%5C%5C%26%3D%5Cfrac%7Be%5E%7B-%5Cpi%5E2%5Cxi%2Fa%7D%7D%7B%5Csqrt%20a%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cleft(t%2B%5Cfrac%7B%5Cpi%20i%5Cxi%7D%7B%5Csqrt%20a%7D%5Cright)%5E2%7D%5Cmathrm%20dt%5C%5C%26%3D%5Cfrac%7Be%5E%7B-%5Cpi%5E2%5Cxi%5E2%2Fa%7D%7D%7B%5Csqrt%20a%7D%5Cint_%7B-%5Cinfty%2Bi%5Cfrac%7B%5Cpi%5Cxi%7D%7B%5Csqrt%20a%7D%7D%5E%7B%5Cinfty%2Bi%5Cfrac%7B%5Cpi%5Cxi%7D%7B%5Csqrt%20a%7D%7De%5E%7B-t%5E2%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

為了解決最后的積分,不妨試試構造一個積分圍道:%5Cmathcal%20H%3DC_1%2Br_2%2BC_2%2Br_1

積分圍道

根據Cauchy定理,被積函數在該圍道上的積分等于零,即

%5Coint_%5Cmathcal%20H%20e%5E%7B-t%5E2%7D%5Cmathrm%20dt%3D%5Cint_%7B-R%7D%5ER%20e%5E%7B-t%5E2%7D%5Cmathrm%20dt%2B%5Cint_%7Br_2%7De%5E%7B-t%5E2%7D%5Cmathrm%20dt%2B%5Cint_%7BR%2Bi%5Cfrac%7B%5Cpi%5Cxi%7D%7B%5Csqrt%20a%7D%7D%5E%7B-R%2Bi%5Cfrac%7B%5Cpi%5Cxi%7D%7B%5Csqrt%20a%7D%7De%5E%7B-t%5E2%7D%5Cmathrm%20dt%2B%5Cint_%7Br_1%7De%5E%7B-t%5E2%7D%5Cmathrm%20dt%3D0

其中,r_1上的積分在R%5Cto%5Cinfty時為零:

%5Cbegin%7Baligned%7D%5Cleft%7C%5Cint_%7Br_2%7De%5E%7B-t%5E2%7D%5Cmathrm%20dt%5Cright%7C%26%3D%5Cleft%7C%5Cint_0%5E%7B%5Cpi%5Cxi%2F%5Csqrt%20a%7De%5E%7B-(R%2Biu)%5E2%7Di%5Cmathrm%20du%5Cright%7C%5C%5C%26%5Cle%5Cint_0%5E%7B%5Cpi%5Cxi%2F%5Csqrt%20a%7D%7Ce%5E%7B-R%5E2-2iuR%2Bu%5E2%7D%7C%5Cmathrm%20du%5C%5C%26%5Cle%20e%5E%7B-R%5E2%7D%5Cint_%7B0%7D%5E%7B%5Cpi%5Cxi%2F%5Csqrt%20a%7De%5E%7Bu%5E2%7D%5Cmathrm%20du%5Cxrightarrow%7BR%5Cto%5Cinfty%7D0%5Cend%7Baligned%7D

同理r_2上的積分也為零,于是可得

%5Cint_%7B-%5Cinfty%2Bi%5Cfrac%7B%5Cpi%5Cxi%7D%7B%5Csqrt%20a%7D%7D%5E%7B%5Cinfty%2Bi%5Cfrac%7B%5Cpi%5Cxi%7D%7B%5Csqrt%20a%7D%7De%5E%7B-t%5E2%7D%5Cmathrm%20dt%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-t%5E2%7D%5Cmathrm%20dt%3D%5Csqrt%20%5Cpi

由此便可得:

%5Chat%20f(%5Cxi)%3D%5Csqrt%5Cfrac%7B%5Cpi%7D%7Ba%7De%5E%7B-%5Cpi%5E2%5Cxi%5E2%2Fa%7D

代入到?%5Ctheta(a%2Cz)?中,即可得

  • %255Ctheta(a%252Cz)%253A%253D%255Csum_%257Bn%253D-%255Cinfty%257D%255E%255Cinfty%2520e%255E%257B-a(n%252Bz)%255E2%257D%5Ctheta(a%2Cz)%3D%5Csqrt%7B%5Cfrac%20%5Cpi%20a%7D%5Csum_%7Bm%3D-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cpi%5E2m%5E2%2Fa%2B2%5Cpi%20imz%7D

函數方程

%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)%3D%5Cint_0%5E%5Cinfty%20x%5E%7Bs%2F2-1%7De%5E%7B-x%7D%5Cmathrm%20dx

將它乘以?%5Cpi%5E%7Bs%2F2%7Dn%5E%7B-s%7D?,可以得到

%5Cbegin%7Baligned%7D%5Cpi%5E%7B-s%2F2%7D%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)n%5E%7B-s%7D%26%3D%5Cint_0%5E%5Cinfty%20%5Cleft(%5Cfrac%20x%7B%5Cpi%20n%5E2%7D%5Cright)%5E%7Bs%2F2-1%7De%5E%7B-x%7D%5Cmathrm%20d%5Cfrac%20x%7B%5Cpi%20n%5E2%7D%5C%5C%26%3D%5Cint_0%5E%5Cinfty%20x%5E%7Bs%2F2-1%7De%5E%7B-%5Cpi%20n%5E2x%7D%5Cmathrm%20dx%5Cend%7Baligned%7D

接著對n從1到無窮求和,上式就變成了

  • %5Cpi%5E%7B-s%2F2%7D%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)%5Czeta(s)%3D%5Cint_0%5E%5Cinfty%20x%5E%7Bs%2F2-1%7D%5Cleft(%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20e%5E%7B-%5Cpi%20n%5E2x%7D%5Cright)%5Cmathrm%20dx

記括號內的小東西為?%5CPhi(x)?,下面的任務就是解決它了。我們來通過一些手段讓求和域變?yōu)樨摕o窮到正無窮,

1%2B2%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20e%5E%7B-%5Cpi%20n%5E2x%7D%3D%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cpi%20n%5E2x%7D%3D%5Ctheta(%5Cpi%20x%2C0)

而根據前述,有

%5Ctheta(%5Cpi%20x%2C0)%3D%5Cfrac1%7B%5Csqrt%20x%7D%5Csum_%7Bm%3D-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cpi%20m%5E2%2Fx%7D%3D%5Cfrac1%7B%5Csqrt%20x%7D%2B%5Cfrac2%7B%5Csqrt%20x%7D%5Csum_%7Bm%3D1%7D%5E%5Cinfty%20e%5E%7B-%5Cpi%20m%5E2%2Fx%7D

這也就是說

  • 1%2B2%5CPhi(x)%3D%5Cfrac1%7B%5Csqrt%20x%7D%2B%5Cfrac2%7B%5Csqrt%20x%7D%5CPhi%5Cleft(%5Cfrac1x%5Cright)

稍作變換,即可得

%5CPhi(x)%3D%5Cfrac1%7B%5Csqrt%20x%7D%5CPhi%5Cleft(%5Cfrac1x%5Cright)%2B%5Cfrac1%7B2%5Csqrt%20x%7D-%5Cfrac12

接著回到前文的積分中

%5Cpi%5E%7B-s%2F2%7D%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)%5Czeta(s)%3D%5Cint_0%5E%5Cinfty%20x%5E%7Bs%2F2-1%7D%5CPhi(x)%5Cmathrm%20dx

將積分拆開并利用倒代換,可得

%5Cbegin%7Baligned%7D%5Cint_0%5E%5Cinfty%20x%5E%7Bs%2F2-1%7D%5CPhi(x)%5Cmathrm%20dx%26%3D%5Cint_1%5E%5Cinfty%20x%5E%7Bs%2F2-1%7D%5CPhi(x)%5Cmathrm%20dx%2B%5Cint_1%5E%5Cinfty%20x%5E%7B-s%2F2-1%7D%5CPhi%5Cleft(%5Cfrac1x%5Cright)%5Cmathrm%20dx%5C%5C%26%3D%5Cint_1%5E%5Cinfty%20x%5E%7Bs%2F2-1%7D%5CPhi(x)%2Bx%5E%7B(1-s)%2F2-1%7D%5CPhi(x)%5Cmathrm%20dx%5C%5C%26%5Cquad%2B%5Cfrac12%5Cint_1%5E%5Cinfty%20x%5E%7B(1-s)%2F2-1%7D-x%5E%7B-s%2F2-1%7D%5Cmathrm%20dx%5C%5C%26%3D%5Cint_1%5E%5Cinfty%20x%5E%7Bs%2F2-1%7D%5CPhi(x)%2Bx%5E%7B(1-s)%2F2-1%7D%5CPhi(x)%5Cmathrm%20dx%2B%5Cfrac1%7Bs(s-1)%7D%5Cend%7Baligned%7D

亦即

  • %5Cpi%5E%7B-s%2F2%7D%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)%5Czeta(s)%3D%5Cint_1%5E%5Cinfty%20x%5E%7Bs%2F2-1%7D%5CPhi(x)%2Bx%5E%7B(1-s)%2F2-1%7D%5CPhi(x)%5Cmathrm%20dx%2B%5Cfrac1%7Bs(s-1)%7D

不難發(fā)現(xiàn)此時將s替換為1-s右式是不變的,所以我們得到以下函數方程:

  • %5Cpi%5E%7B-s%2F2%7D%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)%5Czeta(s)%3D%5Cpi%5E%7B-(1-s)%2F2%7D%5CGamma%5Cleft(%5Cfrac%7B1-s%7D2%5Cright)%5Czeta(1-s)

因為右式可以取?%5CRe(s)%3E1?的所有值,所有右式同樣可以取到對應的?%5CRe(s)%3C0?的所有值,再加上這個式子是解析的,于是就得到了zeta函數在?%5CRe(s)%3C0?的解析延拓,再結合往期得到的在?%5CRe(s)%3E1?上的解析延拓,根據其唯一性可知以上等式對所有?s%5Cin%5Cmathbb%20C?都成立,

零點

根據函數方程,并通過觀察發(fā)現(xiàn)??s%3D-2%2C-4%2C%5Cdots?是左式中?%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)?的單極點,這時候右式卻是解析的,這說明此時左式中?%5Czeta(s)%3D0?,亦即?s%3D-2%2C-4%2C%5Cdots?是?%5Czeta-函數的一重零點;

此外還有一個?%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)?的單極點 s%3D0 ,但這時它也是右側中 %5Czeta(1-s)?的單極點,而其它部分均解析,從而得知?%5Czeta(0)%5Cneq0

這些零點在研究素數分布中并不會發(fā)揮太多作用,因此將它們稱為平凡零點,與之相對的當然還有分布得有些許雜亂的非平凡零點,結合?%5Czeta-函數的非零區(qū)域?%5CRe(s)%5Cge1?以及函數方程,?%5Czeta-函數的所有非平凡零點都位于?0%3C%5CRe(s)%3C1?的帶型區(qū)域中。

  • %5Cpi%5E%7B-s%2F2%7D%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)%5Czeta(s)%3D%5Cpi%5E%7B-(1-s)%2F2%7D%5CGamma%5Cleft(%5Cfrac%7B1-s%7D2%5Cright)%5Czeta(1-s)

所有的平凡零點都來自于?%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)?的極點,所以左側的乘積其實是只以?%5Czeta-函數的非平凡零點為零點的函數,但這還不夠,它還有?s%3D0%2C1?這兩個單極點,這好解決,只需要將它乘以?s(s-1)?即可得到完全?%5Czeta-函數,即Riemann's?%5Cxi-函數

  • %5Cxi(s)%3Ds(s-1)%5Cpi%5E%7B-s%2F2%7D%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)%5Czeta(s)

它是復平面上的解析函數,且滿足?%5Cxi(s)%3D%5Cxi(1-s)?,其零點就是?%5Czeta-函數的非平凡零點,有?%5Cxi(0)%3D%5Cxi(1)%3D1

習慣我們用?%5Crho%3D%5Cbeta%2Bi%5Cgamma?表示Riemann?%5Czeta-函數的非平凡零點,并記

N(T)%3A%3D%7C%5C%7B%5Crho%7C0%3C%5Cgamma%5Cle%20T%5C%7D%7C

這里的和號會算上零點的重數,又由于?%5Cxi(s)%3D%5Cxi(1-s)?,所以它的非平凡零點是關于?s%3D%5Cfrac12?對稱的,引入?%5Ceta-函數:

%5Ceta(s)%3D1-%5Cfrac1%7B3%5Es%7D%2B%5Cfrac1%7B5%5Es%7D-%5Cdots%3D(1-2%5E%7B1-s%7D)%5Czeta(s)%2C%5Cquad%5CRe(s)%3E0

這可以說明?%5Czeta?沒有實零點,由此可得

2N(T)%3D%7C%5C%7B%5Crho%7C-T%5Cle%5Cgamma%5Cle%20T%5C%7D%7C

在之后將會給出當 T%5Cto%5Cinfty?時它是發(fā)散的,即說明?%5Czeta?有無窮多個非平凡零點

結語

在傳統(tǒng)的解析數論中,Riemann?%5Czeta-函數有著舉足輕重的地位,然鵝正如本期專欄的引言,在某些情況下,定義在平面?%5CRe(s)%3E1?上的Riemann?%5Czeta-函數用起來極為不便,所以自然就會想到將它替換為解析延拓后的?%5Czeta-函數,使它的定義域“變大”,這時候我們便可以將某些問題挪到?%5CRe(s)%3C1?的區(qū)域上考慮,

最后再來給大家整個活

在函數方程中代入?s%3D-1?,根據 %5Czeta(2)%3D%5Cfrac%7B%5Cpi%5E2%7D6 ,可得?%5Czeta(-1)%3D-%5Cfrac1%7B12%7D?,然后根據?

%5Czeta(s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7Bn%5Es%7D

可得以下等式

1%2B2%2B3%2B%5Cdots%3D-%5Cfrac1%7B12%7D

Prime dream(7)——Riemann Zeta's解析延拓與函數方程的評論 (共 條)

分享到微博請遵守國家法律
蚌埠市| 盱眙县| 灵丘县| 都江堰市| 定陶县| 安丘市| 鄂伦春自治旗| 大名县| 青岛市| 卓资县| 师宗县| 桃园市| 讷河市| 孝昌县| 驻马店市| 德阳市| 和顺县| 陕西省| 蒙自县| 开江县| 汉川市| 蓬莱市| 五莲县| 岳西县| 偏关县| 荆门市| 盐城市| 公安县| 商城县| 闸北区| 北票市| 灵山县| 绥中县| 泰安市| 灌云县| 竹山县| 云林县| 东兰县| 通化县| 固镇县| 邮箱|