網(wǎng)友答疑 饗以諸君
問1.
設(shè)長(zhǎng)度為1與Sn的邊的夾角為θ
1+Sn2=a(n+1)+Sn
即
cosθ
=(12+Sn2-(√a(n+1))2)/(2Sn)
=1/2
即
θ=π/3
問2.
an/a(n-1)
=4cos2(π/(3·2^(n-2)))
=2+2cos(π/(3·2^(n-3)))
同理
a(n-1)/a(n-2)
=2+2cos(π/(3·2^(n-4)))
。。。
a4/a3
=2+2cos(π/(3·2^1))
=1/(2-2cos(π/(3·2^1)))
a3/a2
=2+2cos(π/3·2^0)
=3
a2/a1
=2+2cos(π/(3·2^-1))
=1
又4-4cos2(π/(3·2^(n-3)))
=4-(2cos(π/(3·2^(n-4)))+2)
=2-2cos(π/(3·2^(n-4)))
即(2+2cos(π/(3·2^(n-3))))
/(2-2cos(π/(3·2^(n-4))))
=1/(2-2cos(π/(3·2^(n-3))))
即3(2+2cos(π/(3·2^(n-3))))
/(2-2cos(π/(3·2^(n-4))))
=3/(2-2cos(π/(3·2^(n-3))))
即
疊乘得
an
=3/(2-2cos(π/(3·2^(n-3))))
標(biāo)簽: