最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

Prime dream(4)——Fejér定理

2022-03-19 16:33 作者:子瞻Louis  | 我要投稿

本系列文集:《Prime dream》

其他文集:《Analysis》《雜文集》

數(shù)學(xué)分析中的卷積是以反常積分來定義的:f%2Cg%3A%5Cmathbb%20R%5Cto%5Cmathbb%20C

f*g(x)%3A%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)g(x-t)%5Cmathrm%20dt

通常假設(shè)上式積分對?x%5Cin%5Cmathbb%20R?都存在,稱其為函數(shù) f 與 g 的卷積,通過積分變量代換可知卷積滿足對稱性

delta型函數(shù)族

假設(shè)現(xiàn)在有一根質(zhì)量為1的一維細(xì)線被放置在區(qū)間?%5B0%2C%5Calpha%5D(%5Calpha%3E0)?上,其密度是均勻分布的,那么它在點(diǎn)t的密度可由以下函數(shù)表示:

%5Crho_%5Calpha(t)%3A%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%20%5Cfrac1%5Calpha%20%26%200%5Cle%20t%5Cle%20%5Calpha%20%5C%5C%200%20%26%20%5Ctext%7Botherwise%7D%20%5Cend%7Barray%7D%5Cright.

它會隨著?α 的減小非零的區(qū)間越來越小,直到趨于零,同時(shí)非零區(qū)間的值也越來越大,但它始終滿足:

%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Crho_%5Calpha(t)%5Cmathrm%20dt%3D1

令?%5Calpha%5Cto0?,就得到了Dirac函數(shù)

  • %5Cforall%20t%E2%89%A00%2C%20%5Cdelta(t)%3D0

  • %5Cint_%7B%5Cmathbb%20R%7D%5Cdelta(t)%5Cmathrm%20dt%3D%5Cint_%7B-%5Cepsilon%7D%5E%5Cepsilon%5Cdelta(t)%5Cmathrm%20dt%3D1

其中%5Cepsilon是任意小的正數(shù),我們能得到以下性質(zhì):

f*%5Cdelta(x)%3D%5Clim_%7B%5Calpha%5Cto0%7Df*%5Crho_%5Calpha(x)%3D%5Clim_%7B%5Calpha%5Cto0%7D%5Cfrac1%5Calpha%5Cint_%7Bx-%5Calpha%7D%5Ex%20f(t)%5Cmathrm%20dt

容易發(fā)現(xiàn)若 f 在點(diǎn)x連續(xù),則?f*%5Cdelta(x)%5Cto%20f(x)??,這啟發(fā)我們引入以下定義:

#)對依賴于參變量?%5Calpha%5Cin%20A?的函數(shù)?%5CDelta_%5Calpha%3A%5Cmathbb%20R%5Cto%5Cmathbb%20R?構(gòu)成的函數(shù)族?%5C%7B%5CDelta_%5Calpha%2C%5Calpha%5Cin%20A%5C%7D?,如果

  • %5Cforall%20%5Calpha%5Cin%20A%2C%5CDelta_%5Calpha(x)%5Cge0

  • %5Cforall%20%5Calpha%5Cin%20A%2C%5Cint_%5Cmathbb%20R%5CDelta_%5Calpha%20(t)%5Cmathrm%20dt%3D1

  • %5Cforall%20%5Crho%3E0%2C%5Clim_%7B%5Calpha%5Cto%20%5Comega%7D%5Cint_%7B-%5Crho%7D%5E%5Crho%5CDelta_%5Calpha(t)%5Cmathrm%20dt%3D1

那么就稱該函數(shù)族在?%5Calpha%5Cto%5Comega?時(shí)是delta型函數(shù)族,注意到由第一二個(gè)條件可推出第三個(gè)條件顯然等價(jià)于

%5Clim_%7B%5Calpha%5Cto%20%5Comega%7D%5Cint_%7B%7Ct%7C%5Cge%5Crho%7D%5CDelta_%5Calpha(t)%5Cmathrm%20dt%3D0

Dirac函數(shù)是?%5Crho_%5Calpha?中?%5Calpha%5Cto0?的結(jié)果,所以函數(shù)族?%5C%7B%5Crho_%5Calpha%2C%5Calpha%5Cin%5Cmathbb%20R%5E%2B%5C%7D?構(gòu)成的當(dāng)然是delta型函數(shù)族,然后給出一個(gè)定義:

#’)函數(shù)?f%3AI%5Cto%5Cmathbb%20C?若滿足:

x%5Cin%20E%5Csubset%20I%2C%5Cforall%20%5Cepsilon%3E0%2C%5Cexists%5Crho%3E0%2C%5Ctext%7Bs.t.%7D%5Cforall%20%7Cx-x'%7C%3C%5Crho%5CRightarrow%7Cf(x)-f(x')%7C%3C%5Cepsilon

則稱 f 在 E%5Csubset%20I?上一致連續(xù)

第一眼看到它可能會想到這不就是連續(xù)的定義嘛,但仔細(xì)一想還是有所不同的——其實(shí)當(dāng)中的%5Crho%3D%5Crho(%5Cepsilon)是只依賴于%5Cepsilon的正數(shù),而連續(xù)的標(biāo)準(zhǔn)定義中的ρ是和點(diǎn)x也有關(guān)的,這也說明了一致連續(xù)的函數(shù)必定是連續(xù)的,緊接著可以證明以下關(guān)于delta型函數(shù)族卷積的收斂性定理

(定理)有界函數(shù)?f%3A%5Cmathbb%20R%5Cto%5Cmathbb%20C 在?E%5Csubset%5Cmathbb%20R?上一致連續(xù),若對?%5Calpha%5Cto%5Comega?時(shí)的delta型函數(shù)族%5C%7B%5CDelta_%5Calpha%2C%5Calpha%5Cin%20A%5C%7D,卷積?%5Cforall%20%5Calpha%5Cin%5Cmathbb%20A%2Cf*%5CDelta_%5Calpha(x)?存在,則

x%5Cin%20E%2C%5Calpha%5Cto%5Comega%5Cquad%20%5CRightarrow%20f*%5CDelta_%5Calpha(x)%5Crightrightarrows%20f(x)

? 設(shè)在?%5Cmathbb%20R%7Cf(x)%7C%5Cle%20M,取?%5Cepsilon%3E0%2C%5Crho%3D%5Crho(%5Cepsilon)%3E0,對?x%5Cin%20E%2C%5Calpha%5Cto%5Comega?

%5Cbegin%7Baligned%7D%26%7Cf*%5CDelta_%7B%5Calpha%7D(x)-f(x)%7C%5C%5C%3D%20%26%5Cleft%7C%5Cint_%7B%5Cmathbb%20R%7Df(x-t)%5CDelta_%5Calpha(t)%5Cmathrm%20dt-f(x)%5Cright%7C%3D%5Cleft%7C%5Cint_%7B%5Cmathbb%20R%7D(f(x-t)-f(x))%5CDelta_%5Calpha(t)%5Cmathrm%20dt%5Cright%7C%5C%5C%5Cle%20%26%5Cint_%7B-%5Crho%7D%5E%5Crho%7Cf(x-t)-f(x)%7C%5CDelta_%5Calpha(t)%5Cmathrm%20dt%2B%5Cint_%7B%7Ct%7C%5Cge%5Crho%7D%7Cf(x-t)-f(x)%7C%5CDelta_%5Calpha(t)%5Cmathrm%20dt%5C%5C%3C%26%5Cepsilon%2B2M%5Cint_%7B%7Ct%7C%5Cge%5Crho%7D%5CDelta_%7B%5Calpha%7D(t)%5Cmathrm%20dt%5Cend%7Baligned%7D

由Delta型函數(shù)族的定義可知最后一個(gè)積分實(shí)際上是趨于零的,于是?%5Cforall%5Cepsilon%2C%20%5Cepsilon'%3E0%2C%5Calpha%5Cto%5Comega

%7Cf*%5CDelta_%5Calpha(x)-f(x)%7C%3C%5Cepsilon%2B%5Cepsilon'

對所有?x%5Cin%20E?都成立,即?f*%5CDelta_%5Calpha?當(dāng)?%5Calpha%5Cto%5Comega?時(shí)在 E 上一致收斂到?f

%5Csquare

Fejér定理

周期2π的函數(shù) f Fourier級數(shù)部分和:

S_N(x)%3D%5Csum_%7Bn%3D-N%7D%5EN%5Cleft(%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(t)e%5E%7B-int%7D%5Cmathrm%20dt%5Cright)e%5E%7Binx%7D

其Cesàro平均為

%5Csigma_N(x)%3A%3D%5Cfrac%7BS_0(x)%2B%5Cdots%2BS_N(x)%7D%7BN%2B1%7D

根據(jù)上一章我們將部分和寫為積分:

S_n(x)%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(x-t)%5Cfrac%7B%5Csin%5Cleft(n%2B%5Cfrac12%5Cright)t%7D%7B%5Csin%5Cfrac12t%7D%5Cmathrm%20dt

于是有

  • %5Csigma_N(x)%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(x-t)%5Cmathcal%20F_N(t)%5Cmathrm%20dt

其中

%5Cmathcal%20F_N(t)%3A%3D%5Cfrac1%7BN%2B1%7D%5Csum_%7Bn%3D0%7D%5EN%5Cfrac%7B%5Csin%5Cleft(n%2B%5Cfrac12%5Cright)t%7D%7B%5Csin%5Cfrac12t%7D

稱為Fourier級數(shù)的Fejer核,利用積化和差公式,有

%5Csin%5Cleft(n%2B%5Cfrac12%5Cright)t%5Csin%5Cfrac12t%3D%5Cfrac%7B%5Ccos%20nt-%5Ccos%20(n%2B1)t%7D2

由此可得

%5Cbegin%7Baligned%7D%5Cmathcal%20F_N(t)%26%3D%5Cfrac1%7BN%2B1%7D%5Ccdot%5Cfrac1%7B%5Csin%5E2%5Cfrac12t%7D%5Csum_%7Bn%3D0%7D%5EN%5Csin%5Cleft(n%2B%5Cfrac12%5Cright)t%5Csin%5Cfrac12t%5C%5C%26%3D%5Cfrac1%7BN%2B1%7D%5Ccdot%5Cfrac1%7B%5Csin%5E2%5Cfrac12t%7D%5Csum_%7Bn%3D0%7D%5EN%5Cfrac%7B%5Ccos%20nt-%5Ccos(n%2B1)t%7D2%5C%5C%26%3D%5Cfrac1%7BN%2B1%7D%5Ccdot%5Cfrac%7B1-%5Ccos(N%2B1)t%7D%7B2%5Csin%5E2%5Cfrac12t%7D%3D%5Cfrac1%7BN%2B1%7D%5Ccdot%5Cfrac%7B%5Csin%5E2%5Cfrac%7BN%2B1%7D2t%7D%7B%5Csin%5E2%5Cfrac12t%7D%5Cend%7Baligned%7D

可以根據(jù)Dirichlet核的性質(zhì),得到一個(gè)比較著名的積分:

  • %5Cint_%7B-%5Cpi%7D%5E%5Cpi%5Cfrac%7B%5Csin%5E2%5Cfrac%7BN%2B1%7D2t%7D%7B%5Csin%5E2%5Cfrac12t%7D%5Cmathrm%20dt%3D2(N%2B1)%5Cpi

接著定義函數(shù)

%5Cmathfrak%20A_N(t)%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Brcl%7D%5Cfrac%7B%5Cmathcal%20F_N(t)%7D%7B2%5Cpi%7D%2C%20%26%20%7Ct%7C%5Cleq%202%5Cpi%5C%5C0%2C%20%26%20%7Ct%7C%3E2%5Cpi%5Cend%7Barray%7D%5Cright.

可以驗(yàn)證該函數(shù)對正整數(shù)N組成的函數(shù)族在?N%5Cto%5Cinfty?時(shí)是delta型函數(shù)族:

  • %5Cforall%20N%5Cin%5Cmathbb%20N%5E%2B%2C%5Cmathfrak%20A_N(t)%5Cge0

  • %5Cforall%20N%5Cin%5Cmathbb%20N%5E%2B%2C%5Cint_%7B%5Cmathbb%20R%7D%5Cmathfrak%20A_N(t)%5Cmathrm%20dt%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%5Cmathcal%20F_N(t)%5Cmathrm%20dt%3D1

  • %5Cforall%20%5Crho%3E0%2C%5Cint_%7B%7Ct%7C%5Cge%5Crho%7D%5Cmathfrak%20A_N(t)%5Cmathrm%20dt%3D%5Cfrac1%7B%5Cpi%7D%5Cint_%7B%5Crho%7D%5E%5Cpi%5Cmathcal%20F_N(t)%5Cmathrm%20dt%5Cle%5Cfrac1%7B%5Cpi(N%2B1)%7D%5Cint_%7B%5Crho%7D%5E%5Cpi%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Csin%5E2%5Cfrac12t%7D%5Cxrightarrow%7BN%5Cto%5Cinfty%7D0

又因?yàn)?/p>

%5Csigma_N(x)%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(x-t)%5Cmathcal%20F_N(t)%5Cmathrm%20dt%3Df*%5Cmathfrak%20A_N(x)

所以由delta型函數(shù)卷積的收斂性定理可以得到以下定理

(Fejér定理)f%3A%5Cmathbb%20R%5Cto%5Cmathbb%20C 是?%5B-%5Cpi%2C%5Cpi%5D 上絕對可積,周期為2π的函數(shù),若?f?在?E%5Csubset%5Cmathbb%20R 上一致連續(xù),則

x%5Cin%20E%2CN%5Cto%5Cinfty%2C%5Cquad%20%5CRightarrow%20%5Csigma_N(x)%5Crightrightarrows%20f(x)

微積分中的Cauchy命題表明,F(xiàn)ourier級數(shù)部分和的極限若存在,則它與它的Cesàro平均收斂到相同的極限,因此函數(shù) f 的Fourier級數(shù)在它的連續(xù)點(diǎn)處要么發(fā)散,要么收斂到它本身

通過類似上一末結(jié)尾的操作,可以用變量代換將該結(jié)論推廣到任何周期函數(shù)

Fourier積分的Fejér定理

用類似的方法將Fourier級數(shù)推廣至Fourier積分,對滿足一定條件的函數(shù) f?,其Fourier積分為

I(x)%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20%7B%5Cleft(%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)e%5E%7B-2%5Cpi%20i%5Comega%20t%7D%5Cmathrm%20dt%5Cright)%7De%5E%7B2%5Cpi%20i%5Comega%20x%7D%5Cmathrm%20d%5Comega

作代換%5Cxi%3D2%5Cpi%5Comega,可得

I(x)%3D%5Cfrac1%7B2%5Cpi%20%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20%7B%5Cleft(%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)e%5E%7B-i%5Cxi%20t%7D%5Cmathrm%20dt%5Cright)%7De%5E%7Bi%5Cxi%20x%7D%5Cmathrm%20d%5Cxi

為了方便,記

F(%5Cxi)%3A%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)e%5E%7B-i%5Cxi%20t%7D%5Cmathrm%20dt

取 I 的絕對值不超過A的積分

I_A(x)%3A%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-A%7D%5EAF(%5Cxi)e%5E%7Bi%5Cxi%20x%7D%5Cmathrm%20d%5Cxi

其積分平均為

%5Cmathfrak%20S_T(x)%3D%5Cfrac1T%5Cint_0%5ETI_A(x)%5Cmathrm%20dA

畫出這個(gè)二重積分的積分區(qū)域

手繪積分區(qū)域

由此交換求和順序可得

%5Cbegin%7Baligned%7D%5Cmathfrak%20S_T(x)%26%3D%5Cfrac1T%5Cint_%7B-T%7D%5ET%5Cint_%7B%7C%5Cxi%7C%7D%5ETF(%5Cxi)e%5E%7Bi%5Cxi%20x%7D%5Cmathrm%20dA%5Cmathrm%20d%5Cxi%5C%5C%26%3D%5Cint_%7B-T%7D%5ET%5Cleft(1-%5Cfrac%7B%7C%5Cxi%7C%7DT%5Cright)F(%5Cxi)e%5E%7Bi%5Cxi%20x%7D%5Cmathrm%20d%5Cxi%5Cend%7Baligned%7D

再由F的定義,有

%5Cmathfrak%20S_T(x)%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)%5Cmathfrak%20F_T(x-t)%5Cmathrm%20dt

其中?%5Cmathfrak%20F_T?是積分Fejer核,

%5Cmathfrak%20F_T(u)%3A%3D%5Cint_%7B-T%7D%5ET%5Cleft(1-%5Cfrac%7B%7C%5Cxi%7C%7DT%5Cright)e%5E%7Bi%5Cxi%20u%7D%5Cmathrm%20d%5Cxi

通過分部積分可以算得

%5Cmathfrak%20F_T(u)%3DT%5Cleft(%5Cfrac%7B%5Csin%20Tu%2F2%7D%7BTu%2F2%7D%5Cright)%5E2

令?k_T%3A%3D%5Cfrac%7B%5Cmathfrak%20F_T%7D%7B2%5Cpi%7D ,則

%5Cmathfrak%20S_T(x)%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)k_T(x-t)%5Cmathrm%20dt%3Df*k_T(x)

首先顯然有?k_T?非負(fù),再由其定義,我們可以引入以下函數(shù):

%5CPhi_T(%5Cxi)%3A%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%20%5Cleft(1-%5Cfrac%7B%7C%5Cxi%7C%7D%7BT%7D%5Cright)%2C%20%26%7C%5Cxi%7C%5Cle%20T%20%5C%5C0%2C%20%26%20%7C%5Cxi%7C%3ET%5Cend%7Barray%7D%20%5Cright.

顯然它滿足Lipschitz條件,因此可以將其寫為Fourier積分,

%5Cbegin%7Baligned%7D%5CPhi_T(w)%26%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Ccolor%7Bred%7D%7B%5Cleft(%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5CPhi_T(%5Cxi)e%5E%7Bi%5Cxi%20u%7D%5Cmathrm%20d%5Cxi%5Cright)%7De%5E%7B-iwu%7D%5Cmathrm%20du%5C%5C%26%3D%5Cint_%7B%5Cmathbb%20R%7Dk_T(u)e%5E%7Biwu%7D%5Cmathrm%20du%5Cend%7Baligned%7D

取 w=0 ,可得對任意?T%3E0

  • %5Cint_%5Cmathbb%20R%20k_T(u)%5Cmathrm%20du%3D1

與此同時(shí)又得到了一個(gè)有用的積分:

%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Cleft(%5Cfrac%7B%5Csin%20Tu%2F2%7D%7BTu%2F2%7D%5Cright)%5E2%5Cmathrm%20du%3D%5Cfrac%7B2%5Cpi%7D%7BT%7D

又有對?%5Crho%3E0?,當(dāng)?T%5Cto%5Cinfty 時(shí)

  • %5Cint_%7B%7Cu%7C%5Cge%5Crho%7D%20k_T(u)%5Cmathrm%20du%3D%5Cfrac1%5Cpi%5Cint_%7B%5Crho%7D%5E%5Cinfty%5Cmathfrak%20F_T(u)%5Cmathrm%20du%5Cle%5Cfrac4%7BT%5Cpi%20%7D%5Cint_%7B%5Crho%7D%5E%5Cinfty%5Cfrac1%7Bu%5E2%7D%5Cmathrm%20du%5Cxrightarrow%7BT%5Cto%5Cinfty%7D0

這說明了?k_T?組成的函數(shù)族在?T%5Cto%5Cinfty?是delta型函數(shù)族,于是由其卷積的收斂性定理,可得Fourier積分的Fejér定理:

(Fejér定理)f%3A%5Cmathbb%20R%5Cto%5Cmathbb%20C?是?%5Cmathbb%20R 上絕對可積的函數(shù),若?f?在?E%5Csubset%5Cmathbb%20R?上一致連續(xù),則

x%5Cin%20E%2CT%5Cto%5Cinfty%5Cquad%5CRightarrow%20%5Cmathfrak%20S_T(x)%5Crightrightarrows%20f(x)

結(jié)語

這期我們由卷積與Dirac函數(shù)引入了delta型函數(shù)族,并證明了滿足某種條件時(shí),它與函數(shù)的卷積收斂于該函數(shù),于是得以證明了fourier分析中的Fejér定理,這個(gè)定理將會在下一期素?cái)?shù)定理(較弱形式)的證明中用到,沒錯(cuò),正是數(shù)論中大名鼎鼎的素?cái)?shù)定理,盡管這個(gè)定理看上去與素?cái)?shù)毫無聯(lián)系,但它們就是存在如此微妙的聯(lián)系——這就是數(shù)學(xué),不是么?


參考

  1. 《數(shù)學(xué)分析》 by B.A.卓里奇

  2. 《Fourier Analysis》 by Javier Duoandikoetxea (writ.), David Cruz

  3. 《數(shù)論導(dǎo)引》by?華羅庚


Prime dream(4)——Fejér定理的評論 (共 條)

分享到微博請遵守國家法律
偏关县| 防城港市| 申扎县| 临泉县| 连平县| 甘孜县| 新乡市| 南漳县| 沈丘县| 平度市| 延长县| 荆州市| 开封市| 东源县| 泸定县| 开原市| 唐山市| 景宁| 天峻县| 宾川县| 铁力市| 正镶白旗| 二连浩特市| 辽宁省| 大同县| 公安县| 华阴市| 吉水县| 达拉特旗| 遵义市| 讷河市| 乌兰察布市| 莱阳市| 郓城县| 吐鲁番市| 辽中县| 绩溪县| 讷河市| 大石桥市| 潼关县| 湖州市|