喚醒干細(xì)胞,誘導(dǎo)多個(gè)組織再生!長(zhǎng)期運(yùn)動(dòng)可讓身體脫胎換骨
再生醫(yī)學(xué),指通過(guò)生物學(xué)或生物工程技術(shù),使人體組織自我修復(fù)、更新的醫(yī)療手段。減緩、制止甚至逆轉(zhuǎn)衰老過(guò)程則便是再生醫(yī)學(xué)的目的之一。
近20年來(lái),隨著老齡化的加重,再生醫(yī)學(xué)受到了政府的高度重視與支持,成為我國(guó)醫(yī)學(xué)研究的熱點(diǎn),干細(xì)胞、人造組織、基因治療等新技術(shù)層出不窮[1,2]。
但是,有研究者告訴我們,除了這些高大上的技術(shù),跑步、游泳等日常運(yùn)動(dòng)也可以促進(jìn)人體組織再生,讓我們?cè)交钤侥贻p。
今年5月,上海大學(xué)肖俊杰教授團(tuán)隊(duì)聯(lián)合海外機(jī)構(gòu)發(fā)表了綜述[3],闡述了長(zhǎng)期運(yùn)動(dòng)對(duì)小鼠多個(gè)組織和系統(tǒng)再生的影響,并且通過(guò)對(duì)信號(hào)通路的研究,揭示了運(yùn)動(dòng)介導(dǎo)干細(xì)胞活化的機(jī)制。
肌肉
成人骨骼肌由肌細(xì)胞和少量肌肉干細(xì)胞組成,其中肌肉干細(xì)胞在成年后便處于靜止?fàn)顟B(tài),只有肌肉損傷或受到運(yùn)動(dòng)刺激時(shí)才會(huì)被激活[4]。
然而,在衰老等條件下,肌肉干細(xì)胞的調(diào)節(jié)因子被破壞,活化和再生能力被限制。例如鈣結(jié)合蛋白異常表達(dá),老化細(xì)胞外基質(zhì)誘導(dǎo)肌肉干細(xì)胞轉(zhuǎn)化為成纖維細(xì)胞,都損傷了肌肉干細(xì)胞的成肌能力[5]。
但是,運(yùn)動(dòng)能夠改善衰老帶來(lái)的肌肉萎縮,增加肌肉細(xì)胞增殖和活化,其機(jī)制包括AKT, MAPK等信號(hào)通路和代謝重編程。這些分子調(diào)節(jié)因子在年老和年輕小鼠體內(nèi)發(fā)揮著不同作用。
例如,長(zhǎng)期運(yùn)動(dòng)能夠通過(guò)激活A(yù)KT通路、恢復(fù)細(xì)胞周期蛋白D1表達(dá)來(lái)促進(jìn)老年小鼠肌肉干細(xì)胞增殖再生。而在年輕小鼠體內(nèi),運(yùn)動(dòng)則通過(guò)MAPK通路促進(jìn)肌肉干細(xì)胞周期,還通過(guò)抑制AKT-mTOR活性和線粒體代謝、呼吸來(lái)保護(hù)肌肉干細(xì)胞增殖,增加干細(xì)胞更新能力[6-9]。
除了作用于肌肉干細(xì)胞外,運(yùn)動(dòng)還可以通過(guò)AMPK信號(hào)促進(jìn)纖維成脂祖細(xì)胞(FAP)衰老,從而分泌促進(jìn)肌肉干細(xì)胞增殖和分化的因子,引發(fā)“再生炎癥”,激活肌肉再生[10]。
另外,抗阻訓(xùn)練也可提高蛋白質(zhì)合成速率,增加肌肉質(zhì)量和老年人肌纖維間干細(xì)胞數(shù)量[11,12]。
圖注:運(yùn)動(dòng)介導(dǎo)肌肉再生的信號(hào)通路
神經(jīng)
成年人大腦中,海馬齒狀回(DG)區(qū)域可以持續(xù)產(chǎn)生新神經(jīng)元,調(diào)節(jié)學(xué)習(xí)、記憶和情緒[13]。研究表明,運(yùn)動(dòng)能夠促進(jìn)成人海馬神經(jīng)前體細(xì)胞(NPC)增殖和神經(jīng)元分化[14,15],修復(fù)阿爾茨海默導(dǎo)致的認(rèn)知障礙[16]。
此外,運(yùn)動(dòng)還會(huì)讓老年小鼠神經(jīng)干細(xì)胞恢復(fù)到年輕時(shí)的水平[17],改善小鼠癡呆[18],同時(shí)促進(jìn)腦部形成新的突觸,起到提高小鼠記憶力,改善帕金森動(dòng)物運(yùn)動(dòng)能力等作用[19-21]。
以往研究發(fā)現(xiàn),運(yùn)動(dòng)會(huì)產(chǎn)生很多促進(jìn)神經(jīng)再生的因子,如BDNF[13]、VEGF[22]、IGF1[23,24]、GH[25]、神經(jīng)遞質(zhì)5 -羥色胺[26]和RGS6[29]。
其中BDNF能夠穿過(guò)血腦屏障[27],即使產(chǎn)生于其它器官(如骨骼肌[28])也能誘導(dǎo)神經(jīng)再生,并且可減輕阿爾茨海默病相關(guān)的腦內(nèi)炎癥[13]。
除了再生因子,運(yùn)動(dòng)還可以通過(guò)胞間作用來(lái)調(diào)節(jié)神經(jīng)干細(xì)胞的增殖,例如通過(guò)血小板因子4 (PF4)激活血小板[11],從而促進(jìn)神經(jīng)再生。
但是,運(yùn)動(dòng)會(huì)誘導(dǎo)鼻咽癌相關(guān)通路Notch1的活性[12],目前機(jī)制尚不明確。
圖注:運(yùn)動(dòng)介導(dǎo)神經(jīng)再生的信號(hào)通路
心臟
到目前為止,研究者們還沒(méi)有發(fā)現(xiàn)成年人心臟干細(xì)胞[30],而胚胎干細(xì)胞誘導(dǎo)形成心臟細(xì)胞的技術(shù)尚不成熟,因此,心臟細(xì)胞的再生是亟待突破的難點(diǎn)。
研究表明,小鼠長(zhǎng)期進(jìn)行跑輪、游泳等運(yùn)動(dòng)可促進(jìn)現(xiàn)有心肌細(xì)胞增殖,進(jìn)而促進(jìn)內(nèi)源性心肌再生[31,32]。
運(yùn)動(dòng)還可以促進(jìn)心肌梗死、心肌炎等心臟損傷后的修復(fù)[33,34]。目前,運(yùn)動(dòng)被認(rèn)為是保護(hù)心血管健康和改善心血管疾病(CVD)的有效方式[35,36]。
目前發(fā)現(xiàn)運(yùn)動(dòng)介導(dǎo)心臟再生的途徑有IGF-PI3K-Akt軸[37-39]、ADAR2 - mir -34a - cyclin D1軸[22]、非編碼RNA[40,41]、小RNA [21,24,42]、長(zhǎng)鏈非編碼RNA LncCPhar和lncExACT1等[43,44]。
圖注:運(yùn)動(dòng)介導(dǎo)心臟再生的信號(hào)通路
血管和淋巴管
內(nèi)皮祖細(xì)胞(EPC)是血管生成的關(guān)鍵細(xì)胞。研究發(fā)現(xiàn),游泳可以增加老年小鼠EPC數(shù)量,改善后肢缺血,同時(shí),已經(jīng)有研究證明適度的低氧運(yùn)動(dòng)可促進(jìn)人類血管生成[45]。
最近的一項(xiàng)研究還表明,游泳等運(yùn)動(dòng)能夠誘導(dǎo)小鼠的心臟淋巴管生成,促進(jìn)心肌細(xì)胞增殖[46]。
雖然運(yùn)動(dòng)可以有效刺激組織再生,但是某些群體由于身體原因,不適合進(jìn)行運(yùn)動(dòng),運(yùn)動(dòng)的健康作用就被大大限制了。
為了解決這個(gè)問(wèn)題,研究者們把目光放在了運(yùn)動(dòng)誘導(dǎo)再生的機(jī)制上,通過(guò)直接干預(yù)作用靶點(diǎn),達(dá)到和運(yùn)動(dòng)一樣的效果。目前,這類治療方案已初見(jiàn)成效。
IGF1
在多個(gè)器官中,IGF1的表達(dá)隨著運(yùn)動(dòng)而升高,對(duì)提高肌肉力量[47]、減少衰老導(dǎo)致的腦細(xì)胞凋亡[48],以及心肌細(xì)胞生長(zhǎng)[49]都起到重要作用。
研究發(fā)現(xiàn),IGF1基因治療能顯著恢復(fù)脊髓損傷的成年大鼠神經(jīng)功能[50],還促進(jìn)脊髓損傷小鼠的脊髓再生[51]。
由于IGF1治療可能引發(fā)腫瘤,一些研究者開(kāi)發(fā)了間接干預(yù)IGF1的小分子藥物。例如,BGP-15可以提高IGF1磷酸化,改善心力衰竭小鼠的心臟功能[52]。
PI3K-Akt通路
在肌肉,大腦和心臟中,PI3K信號(hào)的激活都會(huì)促進(jìn)組織再生,而且目前發(fā)現(xiàn)多種可以作用于PI3K的小分子藥物。
例如,PTEN是PI3K信號(hào)通路的負(fù)調(diào)控因子[53]。Bisperoxovanadium可以通過(guò)抑制PTEN激活PI3K,進(jìn)行肌肉修復(fù)[54]。
在神經(jīng)系統(tǒng)中,芒柄花素可以通過(guò)激活PI3K通路來(lái)預(yù)防腦缺血;外源性FGF10則通過(guò)該信號(hào),促進(jìn)外周神經(jīng)損傷后的軸突再生[55,56]。
磷脂酰肌醇3-激酶(caPI3K-p110α)是作用于心臟的靶向藥物,目前發(fā)現(xiàn)可以通過(guò)刺激PI3K通路,改善小鼠心臟功能[57,58,59],提示PI3K基因治療在治療心血管疾病方面具有臨床潛力。
miRNA
小鼠的運(yùn)動(dòng)實(shí)驗(yàn)證明,miRNA介導(dǎo)多個(gè)器官的細(xì)胞增殖。例如,miR-23a/miR-27a可減輕慢性腎炎小鼠的肌肉損失[60];miR-135a下調(diào)可增加神經(jīng)前體細(xì)胞的增殖,促進(jìn)軸突再生[61,62];miR-17-3p有助于誘導(dǎo)的心肌細(xì)胞增殖。
這些觀察結(jié)果表明,干預(yù)miRNA表達(dá)在組織再生方面有很大研究前景。
不用親自運(yùn)動(dòng),直接用藥物就能達(dá)到同等效果,可能聽(tīng)起來(lái)很誘人,但是作者對(duì)這一研究提出了新的思考,那就是運(yùn)動(dòng)的調(diào)節(jié)分子對(duì)不同類型的細(xì)胞具有特異性作用,如果靶向精確性不夠,則可能產(chǎn)生相反的效果。
另外,作者認(rèn)為單純的運(yùn)動(dòng)是不夠的,需要結(jié)合其它因素一起治療。我們期待研究能夠近一步突破,早日發(fā)展新的再生醫(yī)學(xué)。
—— TIMEPIE ——
這里是只做最硬核續(xù)命學(xué)研究的時(shí)光派,專注“長(zhǎng)壽科技”科普。日以繼夜翻閱文獻(xiàn)撰稿只為給你帶來(lái)最新、最全前沿抗衰資訊,歡迎評(píng)論區(qū)留下你的觀點(diǎn)和疑惑;日更動(dòng)力源自你的關(guān)注與分享,抗衰路上與你并肩同行!
參考文獻(xiàn)
[1]https://gateways.biomedcentral.com/china/blogs/regenerativemedicine/
[2]http://www.gibh.cas.cn/kxcb/kpwz/201111/t20111111_3394924.html
[3]Liu, C., Wu, X., Vulugundam, G., Gokulnath, P., Li, G., & Xiao, J. (2023). Exercise Promotes Tissue Regeneration: Mechanisms Involved and Therapeutic Scope. Sports medicine - open, 9(1), 27. https://doi.org/10.1186/s40798-023-00573-9
[4]Brett, J. O., Arjona, M.& Ikeda, M., et,al. (2020). Exercise rejuvenates quiescent skeletal muscle stem cells in old mice through restoration of Cyclin D1. Nature metabolism, 2(4), 307–317. https://doi.org/10.1038/s42255-020-0190-0
[5]Chen, Z., Li, L.& Wu, W., et,al. (2020). Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis. Theranostics, 10(14), 6448–6466. https://doi.org/10.7150/thno.43577
[6]Inoue, A., Cheng, X. W.& Huang, Z., et, al . (2017). Exercise restores muscle stem cell mobilization, regenerative capacity and muscle metabolic alterations via adiponectin/AdipoR1 activation in SAMP10 mice. Journal of cachexia, sarcopenia and muscle, 8(3), 370–385. https://doi.org/10.1002/jcsm.12166
[7]Abreu, P., & Kowaltowski, A. J. (2020). Satellite cell self-renewal in endurance exercise is mediated by inhibition of mitochondrial oxygen consumption. Journal of cachexia, sarcopenia and muscle, 11(6), 1661–1676. https://doi.org/10.1002/jcsm.12601
[8]Saito, Y., Chikenji, T. S., & Matsumura, T., et, al. (2020). Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nature communications, 11(1), 889. https://doi.org/10.1038/s41467-020-14734-x
[9]Schultz, E., Jaryszak, D. L., & Valliere, C. R. (1985). Response of satellite cells to focal skeletal muscle injury. Muscle & nerve, 8(3), 217–222. https://doi.org/10.1002/mus.880080307
[10]Stearns-Reider, K. M., D'Amore, A., Beezhold, K., Rothrauff, B., Cavalli, L., Wagner, W. R., Vorp, D. A., Tsamis, A., Shinde, S., Zhang, C., Barchowsky, A., Rando, T. A., Tuan, R. S., & Ambrosio, F. (2017). Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging cell, 16(3), 518–528. https://doi.org/10.1111/acel.12578
[11] Baar, K., & Esser, K. (1999). Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. The American journal of physiology, 276(1), C120–C127. https://doi.org/10.1152/ajpcell.1999.276.1.C120
[12]Blocquiaux, S., Gorski, T., Van Roie, E., Ramaekers, M., Van Thienen, R., Nielens, H., Delecluse, C., De Bock, K., & Thomis, M. (2020). The effect of resistance training, detraining and retraining on muscle strength and power, myofibre size, satellite cells and myonuclei in older men. Experimental gerontology, 133, 110860. https://doi.org/10.1016/j.exger.2020.110860
[13] Ming, G. L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4), 687–702. https://doi.org/10.1016/j.neuron.2011.05.001
[14] Leiter, O., Seidemann, S., & Overall, R. W., et, al. (2019). Exercise-Induced Activated Platelets Increase Adult Hippocampal Precursor Proliferation and Promote Neuronal Differentiation. Stem cell reports, 12(4), 667–679. https://doi.org/10.1016/j.stemcr.2019.02.009
[15] Brandt, M. D., Maass, A., & Kempermann, G., et, al. (2010). Physical exercise increases Notch activity, proliferation and cell cycle exit of type-3 progenitor cells in adult hippocampal neurogenesis. The European journal of neuroscience, 32(8), 1256–1264. https://doi.org/10.1111/j.1460-9568.2010.07410.x
[16] Choi, S. H., Bylykbashi, E., & Chatila, Z. K., et, al. (2018). Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science (New York, N.Y.), 361(6406), eaan8821. https://doi.org/10.1126/science.aan8821
[17] Fry, C. S., Noehren, B., &Mula, J., et, al. Fibre type-specific satellite cell response to aerobic training in sedentary adults. The Journal of physiology, 592(12), 2625–2635. https://doi.org/10.1113/jphysiol.2014.271288
[18] Ohtomo, R., Kinoshita, K., & Ohtomo, G., et, al. (2020). Treadmill Exercise Suppresses Cognitive Decline and Increases White Matter Oligodendrocyte Precursor Cells in a Mouse Model of Prolonged Cerebral Hypoperfusion. Translational stroke research, 11(3), 496–502. https://doi.org/10.1007/s12975-019-00734-7
[19] Ding, Y., Li, J., & Clark, J., et, al. (2003). Synaptic plasticity in thalamic nuclei enhanced by motor skill training in rat with transient middle cerebral artery occlusion. Neurological research, 25(2), 189–194. https://doi.org/10.1179/016164103101201184
[20] Mu, L., Cai, J., & Gu, B., et, al. (2022). Treadmill Exercise Prevents Decline in Spatial Learning and Memory in 3×Tg-AD Mice through Enhancement of Structural Synaptic Plasticity of the Hippocampus and Prefrontal Cortex. Cells, 11(2), 244. https://doi.org/10.3390/cells11020244
[21] Tillerson, J. L., Caudle, W. M., & Reverón, M. E., et, al. (2003). Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience, 119(3), 899–911. https://doi.org/10.1016/s0306-4522(03)00096-4
[22]Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C. J., & Palmer, T. D. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. The European journal of neuroscience, 18(10), 2803–2812. https://doi.org/10.1111/j.1460-9568.2003.03041.x
[23]Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience, 21(5), 1628–1634. https://doi.org/10.1523/JNEUROSCI.21-05-01628.2001
[24]Mir, S., Cai, W., Carlson, S. W., Saatman, K. E., & Andres, D. A. (2017). IGF-1 mediated Neurogenesis Involves a Novel RIT1/Akt/Sox2 Cascade. Scientific reports, 7(1), 3283. https://doi.org/10.1038/s41598-017-03641-9
[25]Blackmore, D. G., Golmohammadi, M. G., Large, B., Waters, M. J., & Rietze, R. L. (2009). Exercise increases neural stem cell number in a growth hormone-dependent manner, augmenting the regenerative response in aged mice. Stem cells (Dayton, Ohio), 27(8), 2044–2052. https://doi.org/10.1002/stem.120
[26]Klempin, F., Beis, D., Mosienko, V., Kempermann, G., Bader, M., & Alenina, N. (2013). Serotonin is required for exercise-induced adult hippocampal neurogenesis. The Journal of neuroscience : the official journal of the Society for Neuroscience, 33(19), 8270–8275. https://doi.org/10.1523/JNEUROSCI.5855-12.2013
[27]Pan, W., Banks, W. A., Fasold, M. B., Bluth, J., & Kastin, A. J. (1998). Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology, 37(12), 1553–1561. https://doi.org/10.1016/s0028-3908(98)00141-5
[28]Cefis, M., Chaney, R., Quirié, A., Santini, C., Marie, C., Garnier, P., & Prigent-Tessier, A. (2022). Endothelial cells are an important source of BDNF in rat skeletal muscle. Scientific reports, 12(1), 311. https://doi.org/10.1038/s41598-021-03740-8
[29]Gao, Y., Shen, M., Gonzalez, J. C., Dong, Q., Kannan, S., Hoang, J. T., Eisinger, B. E., Pandey, J., Javadi, S., Chang, Q., Wang, D., Overstreet-Wadiche, L., & Zhao, X. (2020). RGS6 Mediates Effects of Voluntary Running on Adult Hippocampal Neurogenesis. Cell reports, 32(5), 107997. https://doi.org/10.1016/j.celrep.2020.107997
[30] Chien, K. R., Frisén, J., & Fritsche-Danielson, R., et, al. (2019). Regenerating the field of cardiovascular cell therapy. Nature biotechnology, 37(3), 232–237. https://doi.org/10.1038/s41587-019-0042-1
[31] Vujic, A., Lerchenmüller, C., & Wu, T. D., et, al. (2018). Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nature communications, 9(1), 1659. https://doi.org/10.1038/s41467-018-04083-1
[32] Liu, X., Xiao, J., & Zhu, H., et, al. (2015). miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell metabolism, 21(4), 584–595. https://doi.org/10.1016/j.cmet.2015.02.014
[33] Wu, X., Wang, L., & Wang, K., et, al. (2022). ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity. Molecular therapy : the journal of the American Society of Gene Therapy, 30(1), 400–414. https://doi.org/10.1016/j.ymthe.2021.07.004
[34] Shi, J., Bei, Y., Kong, X., & Liu, X., et, al. (2017). miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics, 7(3), 664–676. https://doi.org/10.7150/thno.15162
[35] Xiao, J., & Rosenzweig, A. (2021). Exercise and cardiovascular protection: Update and future. Journal of sport and health science, 10(6), 607–608. https://doi.org/10.1016/j.jshs.2021.11.001
[36] Qiu, Y., Fernández-García, & B., Lehmann, et, al. (2023). Exercise sustains the hallmarks of health. Journal of sport and health science, 12(1), 8–35. https://doi.org/10.1016/j.jshs.2022.10.003
[37] Bostr?m, P., Mann, N., Wu, J., Quintero, P. A., Plovie, E. R., Panáková, D., Gupta, R. K., Xiao, C., MacRae, C. A., Rosenzweig, A., & Spiegelman, B. M. (2010). C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell, 143(7), 1072–1083. https://doi.org/10.1016/j.cell.2010.11.036
[38] Ryall, K. A., Bezzerides, V. J., Rosenzweig, A., & Saucerman, J. J. (2014). Phenotypic screen quantifying differential regulation of cardiac myocyte hypertrophy identifies CITED4 regulation of myocyte elongation. Journal of molecular and cellular cardiology, 72, 74–84. https://doi.org/10.1016/j.yjmcc.2014.02.013
[39] Ren, J., Samson, W. K., & Sowers, J. R. (1999). Insulin-like growth factor I as a cardiac hormone: physiological and pathophysiological implications in heart disease. Journal of molecular and cellular cardiology, 31(11), 2049–2061. https://doi.org/10.1006/jmcc.1999.1036
[40] Wang, H., Xie, Y., Guan, L., Elkin, K., & Xiao, J. (2021). Targets identified from exercised heart: killing multiple birds with one stone. NPJ Regenerative medicine, 6(1), 23. https://doi.org/10.1038/s41536-021-00128-0
[41] Wang, L., Lv, Y., Li, G., & Xiao, J. (2018). MicroRNAs in heart and circulation during physical exercise. Journal of sport and health science, 7(4), 433–441. https://doi.org/10.1016/j.jshs.2018.09.008
[42] Yang, T., Ai, S., Gokulnath, P., Li, G., & Xiao, J. (2022). Cellular and Extracellular Non-coding RNAs in Cardiac Physiology and Diseases. Journal of cardiovascular translational research, 15(3), 441–443. https://doi.org/10.1007/s12265-022-10270-9
[43] Gao, R., Wang, L., Bei, Y., Wu, X., Wang, J., Zhou, Q., Tao, L., Das, S., Li, X., & Xiao, J. (2021). Long Noncoding RNA Cardiac Physiological Hypertrophy-Associated Regulator Induces Cardiac Physiological Hypertrophy and Promotes Functional Recovery After Myocardial Ischemia-Reperfusion Injury. Circulation, 144(4), 303–317. https://doi.org/10.1161/CIRCULATIONAHA.120.050446
[44] Li, H., Trager, L. E., Liu, X., Hastings, M. H., Xiao, C., Guerra, J., To, S., Li, G., Yeri, A., Rodosthenous, R., Silverman, M. G., Das, S., Ambardekar, A. V., Bristow, M. R., González-Rosa, J. M., & Rosenzweig, A. (2022). lncExACT1 and DCHS2 Regulate Physiological and Pathological Cardiac Growth. Circulation, 145(16), 1218–1233. https://doi.org/10.1161/CIRCULATIONAHA.121.056850
[45] Cheng, X. W., Kuzuya, M., & Kim, W., et, al. (2010). Exercise training stimulates ischemia-induced neovascularization via phosphatidylinositol 3-kinase/Akt-dependent hypoxia-induced factor-1 alpha reactivation in mice of advanced age. Circulation, 122(7), 707–716. https://doi.org/10.1161/CIRCULATIONAHA.109.909218
[46] Bei, Y., Huang, Z., & Feng, X., et, al. (2022). Lymphangiogenesis contributes to exercise-induced physiological cardiac growth. Journal of sport and health science, 11(4), 466–478. https://doi.org/10.1016/j.jshs.2022.02.005
[47] Bjersing, J. L., Larsson, A., & Palstam, A., et, al. (2017). Benefits of resistance exercise in lean women with fibromyalgia: involvement of IGF-1 and leptin. BMC musculoskeletal disorders, 18(1), 106. https://doi.org/10.1186/s12891-017-1477-5
[48] Lin, J. Y., Kuo, W. W., & Baskaran, R., et, al. (2020). Swimming exercise stimulates IGF1/ PI3K/Akt and AMPK/SIRT1/PGC1α survival signaling to suppress apoptosis and inflammation in aging hippocampus. Aging, 12(8), 6852–6864. https://doi.org/10.18632/aging.103046
[49] McMullen, J. R., Amirahmadi, F., & Woodcock, E. A., Schinke-Braun, M., Bouwman, R. D., Hewitt, K. A., Mollica, J. P., Zhang, L., Zhang, Y., Shioi, T., Buerger, A., Izumo, S., Jay, P. Y., & Jennings, G. L. (2007). Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 104(2), 612–617. https://doi.org/10.1073/pnas.0606663104
[50] Jure, I., Lockhart, E. F., & De Nicola, A. F., et, al. (2021). IGF1 Gene Therapy Reversed Cognitive Deficits and Restored Hippocampal Alterations After Chronic Spinal Cord Injury. Molecular neurobiology, 58(12), 6186–6202. https://doi.org/10.1007/s12035-021-02545-0
[51] Liu, Y., Wang, X., & Li, W., et, al. (2017). A Sensitized IGF1 Treatment Restores Corticospinal Axon-Dependent Functions. Neuron, 95(4), 817–833.e4. https://doi.org/10.1016/j.neuron.2017.07.037
[52] Sapra, G., Tham, Y. K., & Cemerlang, N., et, al. (2014). The small-molecule BGP-15 protects against heart failure and atrial fibrillation in mice. Nature communications, 5, 5705. https://doi.org/10.1038/ncomms6705
[53] Martelli, A. M., Evangelisti, C., & Chiarini, F., et, al. (2010). The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget, 1(2), 89–103. https://doi.org/10.18632/oncotarget.114
[54] Dimchev, G. A., Al-Shanti, N., & Stewart, C. E. (2013). Phospho-tyrosine phosphatase inhibitor Bpv(Hopic) enhances C2C12 myoblast migration in vitro. Requirement of PI3K/AKT and MAPK/ERK pathways. Journal of muscle research and cell motility, 34(2), 125–136. https://doi.org/10.1007/s10974-013-9340-2
[55] Liang, K., Ye, Y., & Wang, Y., et, al. (2014). Formononetin mediates neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/Bcl-2 ratio and upregulation PI3K/Akt signaling pathway. Journal of the neurological sciences, 344(1-2), 100–104. https://doi.org/10.1016/j.jns.2014.06.033
[56] Dong, L., Li, R., & Li, D., et, al. (2019). FGF10 Enhances Peripheral Nerve Regeneration via the Preactivation of the PI3K/Akt Signaling-Mediated Antioxidant Response. Frontiers in pharmacology, 10, 1224. https://doi.org/10.3389/fphar.2019.01224
[57] Weeks, K. L., Gao, X., & Du, X. J., et, al. (2012). Phosphoinositide 3-kinase p110α is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction. Circulation. Heart failure, 5(4), 523–534. https://doi.org/10.1161/CIRCHEARTFAILURE.112.966622
[58] Prakoso, D., De Blasio, M. J., & Qin, C., et, al. (2017). Phosphoinositide 3-kinase (p110α) gene delivery limits diabetes-induced cardiac NADPH oxidase and cardiomyopathy in a mouse model with established diastolic dysfunction. Clinical science (London, England : 1979), 131(12), 1345–1360. https://doi.org/10.1042/CS20170063
[59] Prakoso, D., De Blasio, M. J., & Tate, M., et, al. (2020). Gene therapy targeting cardiac phosphoinositide 3-kinase (p110α) attenuates cardiac remodeling in type 2 diabetes. American journal of physiology. Heart and circulatory physiology, 318(4), H840–H852. https://doi.org/10.1152/ajpheart.00632.2019
[60] Wang, B., Zhang, C., & Zhang, A., et, al. (2017). MicroRNA-23a and MicroRNA-27a Mimic Exercise by Ameliorating CKD-Induced Muscle Atrophy. Journal of the American Society of Nephrology : JASN, 28(9), 2631–2640. https://doi.org/10.1681/ASN.2016111213
[61] Wang, N., Yang, Y., & Pang, M.,et, al. (2020). MicroRNA-135a-5p Promotes the Functional Recovery of Spinal Cord Injury by Targeting SP1 and ROCK. Molecular therapy. Nucleic acids, 22, 1063–1077. https://doi.org/10.1016/j.omtn.2020.08.035
[62] van Battum, E. Y., Verhagen, M. G., & Vangoor, V. R., et, al. (2018). An Image-Based miRNA Screen Identifies miRNA-135s As Regulators of CNS Axon Growth and Regeneration by Targeting Krüppel-like Factor 4. The Journal of neuroscience : the official journal of the Society for Neuroscience, 38(3), 613–630. https://doi.org/10.1523/JNEUROSCI.0662-17.2017