最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

復(fù)旦大學(xué)謝啟鴻老師高等代數(shù)在線習(xí)題課 思考題分析與解 ep.32

2021-11-01 21:46 作者:CharlesMa0606  | 我要投稿

本文內(nèi)容主要有關(guān)于線性同構(gòu),在高代白皮書(shū)上對(duì)應(yīng)第4.2.2節(jié)

題目來(lái)自于復(fù)旦大學(xué)謝啟鴻教授在本站高等代數(shù)習(xí)題課的課后思考題,本文僅供學(xué)習(xí)交流

習(xí)題課視頻鏈接:復(fù)旦大學(xué)謝啟鴻高等代數(shù)習(xí)題課_嗶哩嗶哩_bilibili

本人解題水平有限,可能會(huì)有錯(cuò)誤,懇請(qǐng)斧正!

練習(xí)題1? 設(shè)V%E5%92%8CU為數(shù)域F上的向量空間,e_1%2Ce_2%2C%5Ccdots%2Ce_nf_1%2Cf_2%2C%E2%8B%AF%2Cf_m分別是V%E5%92%8CU的基.定義V%E5%92%8CU的線性映射%5Cvarphi_%7Bij%7D%5Cleft(i%3D1%2C2%2C%5Ccdots%2Cn%3Bj%3D1%2C2%2C%5Ccdots%2Cm%5Cright):

%5Cvarphi_%7Bij%7D%5Cleft(e_j%5Cright)%3Df_i%2C%5Cvarphi_%7Bij%7D%5Cleft(e_k%5Cright)%3D0%5Cleft(%5Cforall%20k%5Cneq%20j%5Cright)

求證:%5Cvarphi_%7Bij%7D組成向量空間L%5Cleft(V%2CU%5Cright)的一組基.若令%5Csigma%5Cleft(%5Cvarphi_%7Bij%7D%5Cright)%3DE_%7Bij%7D,這里E_%7Bij%7D是基礎(chǔ)矩陣,證明%5Csigma%3AL%5Cleft(V%2CU%5Cright)%5Crightarrow%20M_%7Bm%5Ctimes%20n%7D%5Cleft(F%5Cright)是線性同構(gòu).

分析與解? 首先驗(yàn)證%5Cvarphi_%7Bij%7D組成向量空間L%5Cleft(V%2CU%5Cright)的一組基.

設(shè)c_%7B11%7D%5Cvarphi_%7B11%7D%2Bc_%7B12%7D%5Cvarphi_%7B12%7D%2B%5Ccdots%2Bc_%7Bnm%7D%5Cvarphi_%7Bnm%7D%3D0%2Cc_%7Bij%7D%5Cin%20F,注意到V中任意一個(gè)向量都可以表示為e_1%2Ce_2%2C%5Ccdots%2Ce_n的線性組合,從而不妨設(shè)%5Calpha%3Dk_1e_1%2Bk_2e_2%2B%5Ccdots%2Bk_ne_n,于是得到

%5Cleft(c_%7B11%7Dk_1%2Bc_%7B21%7Dk_2%2B%5Ccdots%2Bc_%7Bn1%7Dk_n%5Cright)f_1%2B%5Ccdots%2B%5Cleft(c_%7B1m%7Dk_1%2B%5Ccdots%2Bc_%7Bnm%7Dk_n%5Cright)f_m%3D0

從而

c_%7B11%7Dk_1%2Bc_%7B21%7Dk_2%2B%5Ccdots%2Bc_%7Bn1%7Dk_n%3D%5Ccdots%3Dc_%7B1m%7Dk_1%2B%5Ccdots%2Bc_%7Bnm%7Dk_n%3D0%2C%5Cforall%20k_i%5Cin%20F

于是c_%7Bij%7D%3D0,從而%5Cvarphi_%7Bij%7D線性無(wú)關(guān).顯然對(duì)任意的線性映射%5Cvarphi%3AV%5Crightarrow%20U%5Cin%20L%5Cleft(V%2CU%5Cright),我們只需要考慮其在基向量上的取值,不妨設(shè)

%5Cvarphi%5Cleft(e_i%5Cright)%3Dl_%7Bi1%7Df_1%2Bl_%7Bi2%7Df_2%2B%5Ccdots%2Bl_%7Bim%7Df_m%2C%5Cforall1%5Cle%20i%5Cle%20n%2Cl_%7Bij%7D%5Cin%20F

顯然

%5Cvarphi%5Cleft(e_i%5Cright)%3Dl_%7Bi1%7D%5Cvarphi_%7B1i%7D%5Cleft(e_i%5Cright)%2Bl_%7Bi2%7D%5Cvarphi_%7B2i%7D%5Cleft(e_i%5Cright)%2B%5Ccdots%2Bl_%7Bim%7D%5Cvarphi_%7Bmi%7D%5Cleft(e_i%5Cright)

從而對(duì)任意的%5Calpha%5Cin%20V%2C%5Cvarphi%5Cleft(%5Calpha%5Cright)可以表示為%5Cvarphi_%7Bij%7D%5Cleft(e_j%5Cright)的線性組合.

所以%5Cvarphi_%7Bij%7D組成向量空間L%5Cleft(V%2CU%5Cright)的一組基.

接下來(lái)驗(yàn)證%5Csigma%3AL%5Cleft(V%2CU%5Cright)%5Crightarrow%20M_%7Bm%5Ctimes%20n%7D%5Cleft(F%5Cright)是線性同構(gòu).

首先這兩個(gè)空間維數(shù)相同,然后我們可以找到%5Csigma的逆映射,只需要考慮其在基向量上的取值:%5Csigma%5E%7B-1%7D%5Cleft(E_%7Bij%7D%5Cright)%3D%5Cvarphi_%7Bij%7D%2C%5Cforall1%5Cle%20i%5Cle%20n%2C1%5Cle%20j%5Cle%20m,于是%5Csigma%3AL%5Cleft(V%2CU%5Cright)%5Crightarrow%20M_%7Bm%5Ctimes%20n%7D%5Cleft(F%5Cright)是線性同構(gòu).

[Q.E.D]

? 這個(gè)結(jié)論是十分顯然的,如果不是在這題要證明它們線性同構(gòu)的背景下,我們可以直接將第一個(gè)問(wèn)題幾何問(wèn)題代數(shù)化,研究mn維向量,但由基礎(chǔ)矩陣和mn維向量間獨(dú)特關(guān)系,我們直接研究基礎(chǔ)矩陣線性無(wú)關(guān)的性質(zhì)而立即得到%5Cvarphi_%7Bij%7D組成向量空間L%5Cleft(V%2CU%5Cright)的一組基.

練習(xí)題2? 設(shè)V是由幾乎處處為零的無(wú)窮實(shí)數(shù)數(shù)列(即%5Cleft(a_0%2Ca_1%2Ca_2%2C%5Ccdots%2Ca_n%2C%5Ccdots%5Cright),其中只有有限多個(gè)a_i不為零)組成的實(shí)向量空間,R%5Cleft%5Bx%5Cright%5D是由實(shí)系數(shù)多項(xiàng)式組成的實(shí)向量空間.若令%5Cvarphi%5Cleft(a_0%2Ca_1%2Ca_2%2C%5Ccdots%2Ca_n%2C%5Ccdots%5Cright)%3Da_0%2Ba_1x%2Ba_2x%5E2%2B%5Ccdots%2Ba_nx%5En,其中a%5En%5Cneq0%2Ca_s%3D0%5Cleft(%5Cforall%20s%3En%5Cright),證明%5Cvarphi%3AV%5Crightarrow%20R%5Cleft%5Bx%5Cright%5D是線性同構(gòu).

分析與解? 容易找到%5Cvarphi%3AV%5Crightarrow%20R%5Cleft%5Bx%5Cright%5D的逆映射%5Cpsi%3AR%5Cleft%5Bx%5Cright%5D%5Crightarrow%20V

對(duì)于任意的多項(xiàng)式f%5Cleft(x%5Cright)%3Da_0%2Ba_1x%2Ba_2x%5E2%2B%5Ccdots%2Ba_nx%5En%2C%5Cleft(a_n%5Cneq0%5Cright)%5Cin%20R%5Cleft%5Bx%5Cright%5D,我們定義%5Cpsi%5Cleft(f%5Cleft(x%5Cright)%5Cright)%3D%5Cleft(a_0%2Ca_1%2C%5Ccdots%2Ca_n%2C0%2C0%2C%5Ccdots%5Cright),從而

%5Cpsi%5Cvarphi%5Cleft(a_0%2Ca_1%2C%5Ccdots%2Ca_n%2C%5Ccdots%5Cright)%3D%5Cpsi%5Cleft(a_0%2Ba_1x%2B%5Ccdots%2Ba_nx%5En%5Cright)%3D%5Cleft(a_0%2Ca_1%2C%5Ccdots%2Ca_n%2C%5Ccdots%5Cright)

其中a%5En%5Cneq0%2Ca_s%3D0%5Cleft(%5Cforall%20s%3En%5Cright),從而%5Cpsi%5Cvarphi%3DId_V

%5Cvarphi%5Cpsi%5Cleft(a_0%2Ba_1x%2B%5Ccdots%2Ba_nx%5En%5Cright)%3D%5Cvarphi%5Cleft(a_0%2Ca_1%2C%5Ccdots%2Ca_n%2C0%2C0%2C%5Ccdots%5Cright)%3Da_0%2Ba_1x%2B%5Ccdots%2Ba_nx%5En

從而%5Cvarphi%5Cpsi%3DId_%7BR%5Cleft%5Bx%5Cright%5D%7D

于是%5Cpsi%3D%5Cvarphi%5E%7B-1%7D,即%5Cvarphi%3AV%5Crightarrow%20R%5Cleft%5Bx%5Cright%5D是線性同構(gòu).

[Q.E.D]

練習(xí)題3(19級(jí)高代I每周一題第12題(1))? 設(shè)A%2CB均為數(shù)域K上的m%5Ctimes%20n階矩陣,線性映射%5Cvarphi%3AM_%7Bn%5Ctimes%20m%7D%5Cleft(K%5Cright)%5Crightarrow%20M_%7Bm%5Ctimes%20n%7D%5Cleft(K%5Cright)定義為%5Cvarphi%5Cleft(X%5Cright)%3DAXB.證明:若m%5Cneq%20n,則%5Cvarphi不是線性同構(gòu).

分析與解? 若%5Cvarphi是線性同構(gòu),則它是雙射.

m%3Cn,由滿性可得A%2CB是行滿秩陣,否則r%5Cleft(AXB%5Cright)%5Cle%20min%5C%7Br%5Cleft(A%5Cright)%2Cr%5Cleft(B%5Cright)%5C%7D%3Cm,從而A%2CB都存在右逆,適合右消去律,考慮方程AXB%3DO,則AX%3DO.因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=A" alt="A">不是列滿秩陣,由線性方程組解的判定定理,Ax%3D0不只有零解,從而%5Cexists%20X_0%5Cneq%20O%2Cs.t.AX_0B%3DAOB%3DO,與單性矛盾!

m%3En,由滿性可得A%2CB是列滿秩陣,否則r%5Cleft(AXB%5Cright)%5Cle%20min%5C%7Br%5Cleft(A%5Cright)%2Cr%5Cleft(B%5Cright)%5C%7D%3Cn,從而A%2CB都存在左逆,適合左消去律,考慮方程AXB%3DO,則XB%3DO,即B%5E%5Cprime%20X%5E%5Cprime%3DO.因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=B%5E%5Cprime" alt="B%5E%5Cprime">不是列滿秩陣,由線性方程組解的判定定理,B%5E%5Cprime%20X%5E%5Cprime%3DO不只有零解,即XB%3DO不只有零解,從而%5Cexists%20X_0%5Cneq%20O%2Cs.t.AX_0B%3DAOB%3DO,與單性矛盾!

綜上,若m%5Cneq%20n,則%5Cvarphi不是線性同構(gòu).

[Q.E.D]

事實(shí)上,我們還可以利用相抵標(biāo)準(zhǔn)型理論給出這道題的證明:

設(shè)A%3DP_1%5Cleft(%5Cbegin%7Bmatrix%7DI_%7Br_1%7D%26O%5C%5CO%26O%5C%5C%5Cend%7Bmatrix%7D%5Cright)Q_1%2CB%3DP_2%5Cleft(%5Cbegin%7Bmatrix%7DI_%7Br_2%7D%26O%5C%5CO%26O%5C%5C%5Cend%7Bmatrix%7D%5Cright)Q_2,其中P_im階非異陣,Q_in階非異陣

從而AXB%3DP_1%5Cleft(%5Cbegin%7Bmatrix%7DI_%7Br_1%7D%26O%5C%5CO%26O%5C%5C%5Cend%7Bmatrix%7D%5Cright)Q_1XP_2%5Cleft(%5Cbegin%7Bmatrix%7DI_%7Br_2%7D%26O%5C%5CO%26O%5C%5C%5Cend%7Bmatrix%7D%5Cright)Q_2,令X_0%3DQ_1%5E%7B-1%7D%5Cleft(%5Cbegin%7Bmatrix%7DO%26K_%7B12%7D%5C%5CK_%7B21%7D%26K_%7B22%7D%5C%5C%5Cend%7Bmatrix%7D%5Cright)P_2%5E%7B-1%7D,其中K_%7B12%7D%2CK_%7B21%7D%2CK_%7B22%7D不全為零,則X_0%5Cneq%20O,但P_1%5Cleft(%5Cbegin%7Bmatrix%7DI_%7Br_1%7D%26O%5C%5CO%26O%5C%5C%5Cend%7Bmatrix%7D%5Cright)Q_1X_0P_2%5Cleft(%5Cbegin%7Bmatrix%7DI_%7Br_2%7D%26O%5C%5CO%26O%5C%5C%5Cend%7Bmatrix%7D%5Cright)Q_2%3DO.

從而%5Cexists%20X_0%5Cneq%20O%2Cs.t.AX_0B%3DAOB%3DO,由單性得到矛盾!

從而若m%5Cneq%20n,則%5Cvarphi不是線性同構(gòu).

[Q.E.D]

文末附上圖片格式的解法,有需要的讀者可以自行取用,僅供學(xué)習(xí)交流


復(fù)旦大學(xué)謝啟鴻老師高等代數(shù)在線習(xí)題課 思考題分析與解 ep.32的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
平阴县| 济阳县| 江山市| 新竹市| 天峨县| 青川县| 鹤庆县| 安远县| 渭源县| 麦盖提县| 秀山| 滨州市| 元朗区| 灵宝市| 临泉县| 宁明县| 宁国市| 宜阳县| 临泽县| 保康县| 休宁县| 潼南县| 长兴县| 郑州市| 高青县| 广灵县| 石棉县| 大同县| 汉寿县| 综艺| 崇礼县| 潼关县| 永嘉县| 怀远县| 湖南省| 商丘市| 沾化县| 武城县| 马鞍山市| 和田县| 眉山市|