R語(yǔ)言使用Metropolis- Hasting抽樣算法進(jìn)行邏輯回歸
原文鏈接:http://tecdat.cn/?p=6761
?
在邏輯回歸中,我們將二元響應(yīng)\(Y_i \)回歸到協(xié)變量\(X_i \)上。下面的代碼使用Metropolis采樣來(lái)探索\(\ beta_1 \)和\(\ beta_2 \)的后驗(yàn)YiYi到協(xié)變量XiXi。
?
定義expit和分對(duì)數(shù)鏈接函數(shù)
logit<-function(x){log(x/(1-x))} 此函數(shù)計(jì)算\((\ beta_1,\ beta_2)\)的聯(lián)合后驗(yàn)。它返回后驗(yàn)的對(duì)數(shù)以獲得數(shù)值穩(wěn)定性。(β1,β2)(β1,β2)。它返回后驗(yàn)的對(duì)數(shù)以獲得數(shù)值穩(wěn)定性。
log_post<-function(Y,X,beta){
prob1 ?<- expit(beta[1] + beta[2]*X)
like+prior}
這是MCMC的主要功能.can.sd是候選標(biāo)準(zhǔn)偏差。
Bayes.logistic<-function(y,X,
n.samples=10000,
can.sd=0.1){
keep.beta ? ? <- matrix(0,n.samples,2)
keep.beta[1,] <- beta
acc ? <- att <- rep(0,2)
for(i in 2:n.samples){
for(j in 1:2){
att[j] <- att[j] + 1
# Draw candidate:
canbeta ? ?<- beta
canbeta[j] <- rnorm(1,beta[j],can.sd)
canlp ? ? ?<- log_post(Y,X,canbeta)
# Compute acceptance ratio:
R <- exp(canlp-curlp)
U <- runif(1)
if(U<R){
acc[j] <- acc[j]+1
}
}
keep.beta[i,]<-beta
}
# Return the posterior samples of beta and
# the Metropolis acceptance rates
list(beta=keep.beta,acc.rate=acc/att)}
生成一些模擬數(shù)據(jù)
set.seed(2008)
n ? ? ? ? <- 100
X ? ? ? ? <- rnorm(n)
true.p ? ?<- expit(true.beta[1]+true.beta[2]*X)
Y ? ? ? ? <- rbinom(n,1,true.p)
擬合模型
burn ? ? ?<- 10000
n.samples <- 50000
fit ?<- Bayes.logistic(Y,X,n.samples=n.samples,can.sd=0.5)
tock <- proc.time()[3]
tock-tick
## elapsed
## ? ?3.72
結(jié)果

?abline(true.beta[1],0,lwd=2,col=2)

?abline(true.beta[2],0,lwd=2,col=2)

hist(fit$beta[,1],main="Intercept",xlab=expression(beta[1]),breaks=50)

hist(fit$beta[,2],main="Slope",xlab=expression(beta[2]),breaks=50)
abline(v=true.beta[2],lwd=2,col=2)

print("Posterior mean/sd")
## [1] "Posterior mean/sd"
print(round(apply(fit$beta[burn:n.samples,],2,mean),3))
## [1] -0.076 ?0.798
print(round(apply(fit$beta[burn:n.samples,],2,sd),3))
## [1] 0.214 0.268
print(summary(glm(Y~X,family="binomial")))
##
## Call:
## glm(formula = Y ~ X, family = "binomial")
##
## Deviance Residuals:
## ? ? Min ? ? ? 1Q ? Median ? ? ? 3Q ? ? ?Max
## -1.6990 ?-1.1039 ?-0.6138 ? 1.0955 ? 1.8275
##
## Coefficients:
## ? ? ? ? ? ? Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.07393 ? ?0.21034 ?-0.352 ?0.72521
## X ? ? ? ? ? ?0.76807 ? ?0.26370 ? 2.913 ?0.00358 **
## ---
## Signif. codes: ?0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## ? ? Null deviance: 138.47 ?on 99 ?degrees of freedom
## Residual deviance: 128.57 ?on 98 ?degrees of freedom
## AIC: 132.57
##
## Number of Fisher Scoring iterations: 4
?