最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

Mathhouse中的一些積分題

2023-07-23 22:45 作者:現(xiàn)代微積分  | 我要投稿

今天起興翻了翻以前的“裝b”記錄,發(fā)現(xiàn)了@Mathhouse這位up。評論可以追溯到21年9~12月那時了。嗨,想當(dāng)年我在這up評論區(qū)可謂“叱咤風(fēng)云”,我有幸也成為他首個(非官方號的)關(guān)注[滑稽]

另外,當(dāng)年混日子的事兒可就別提了,我沉迷到回宿舍刷視頻到凌晨(

我當(dāng)時做數(shù)學(xué)題起來的沉迷度可跟大多數(shù)人看小說一樣,所以....嗨,復(fù)試已經(jīng)給我深刻教訓(xùn)了,以后一定要平衡好的

可惜的是這位up不知什么原因停更一年了,期待他有朝一日繼續(xù)回來更新[滑稽]

重新做了做這位up發(fā)的題,發(fā)現(xiàn)有些題目已經(jīng)精通很多聊~(摸魚的"小成果")截取部分題來給出自己的解析

別擔(dān)心,這些都是例子,如果嫌長可以先跳到最后看總結(jié)再回頭做這些題


注:下面的積分均省略+C


(1)%5Cint%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%5Csqrt%7Bx%7D-x%5E2%20%7D%20%7D%20%5Cmathrm%7Bd%7Dx

積分 1/Sqrt[x Sqrt[x] - x^2]

這題可以用切比雪夫定理解決

被積函數(shù)化成二項(xiàng)微分式,即x%5E%7B-%5Cfrac%7B3%7D%7B4%7D%20%7D(1-x%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D)%5E%7B-%5Cfrac%7B1%7D%7B2%7D%20%7D

%5Calpha%20%3D-%5Cfrac%7B3%7D%7B4%7D%2Ca%3D1%2Cb%3D-1%2C%5Cbeta%20%3D%5Cfrac%7B1%7D%7B2%7D%20%2C%5Cgamma%20%3D-%5Cfrac%7B1%7D%7B2%7D%20

其中%5Cfrac%7B%5Calpha%20%2B1%7D%7B%5Cbeta%20%7D%2B%5Cgamma%20%3D0%5Cin%20%5Cmathbb%7BZ%7D%20,屬于情形三,于是令

u%5E2%3D%5Cfrac%7B1-x%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%7D%7Bx%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%7D%20,則有:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A%20x%3D%5Cfrac%7B1%7D%7B(u%5E2%2B1)%5E2%7D%20%5C%5C%0A2u%5Cmathrm%7Bd%7Du%3D-%5Cfrac%7B1%7D%7B2%7D%20x%5E%7B-%5Cfrac%7B3%7D%7B2%7D%20%7D%5Cmathrm%7Bd%7Dx%0A%5Cend%7Bmatrix%7D%5Cright.


于是

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D-4%5Cint%20x%5E%7B%5Cfrac%7B3%7D%7B4%7D%20%7D(1-x%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D)%5E%7B-%5Cfrac%7B1%7D%7B2%7D%20%7Du%5Cmathrm%7Bd%7Du%5C%5C%0A%26%3D-4%5Cint%20(%5Cfrac%7B1%7D%7B(1%2Bu%5E2)%5E2%7D%20)%5E%7B%5Cfrac%7B3%7D%7B4%7D%20%7D(1-(%5Cfrac%7B1%7D%7B(1%2Bu%5E2)%5E2%7D%20)%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D)%5E%7B-%5Cfrac%7B1%7D%7B2%7D%20%7Du%5Cmathrm%7Bd%7Du%5C%5C%0A%26%3D-4%5Cint%20%5Cfrac%7B1%7D%7Bu%5E2%2B1%7D%5Cmathrm%7Bd%7Du%5C%5C%0A%26%3D-4%5Ctan%5E%7B-1%7Du%5C%5C%0A%26%3D-4%5Ctan%5E%7B-1%7D%5Csqrt%7Bx%5E%7B-%5Cfrac%7B1%7D%7B2%7D%20%7D-1%7D%20%0A%5Cend%7Balign%7D

ps:第二行看似長了些,實(shí)際上只是簡單的冪指數(shù)運(yùn)算而已。

(2)%5Cint%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bx-%5Csqrt%7Bx%7D%20%7D%20%7D%20%5Cmathrm%7Bd%7Dx

雙重根式函數(shù)積分 Integral of 1/Sqrt[x - Sqrt[x]] dx = ?

也是用切比雪夫定理

被積函數(shù)化成二項(xiàng)微分式,即x%5E%7B-%5Cfrac%7B1%7D%7B4%7D%20%7D(-1%2Bx%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D)%5E%7B-%5Cfrac%7B1%7D%7B2%7D%20%7D

屬于情形三,于是令u%5E2%3D%5Cfrac%7B-1%2Bx%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%7D%7Bx%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%7D%20

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D4%5Cint%20x%5E%7B%5Cfrac%7B5%7D%7B4%7D%20%7D(x%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D-1)%5E%7B-%5Cfrac%7B1%7D%7B2%7D%20%7Du%5Cmathrm%7Bd%7Du%5C%5C%0A%26%3D4%5Cint%20%5Cfrac%7B1%7D%7B(1-u%5E2)%5E2%7D%20%5Cmathrm%7Bd%7Du%0A%5Cend%7Balign%7D

到此可以采用三角換元u%3D%5Csin%20t了,這里給出另一種分部積分的做法

將分子利用1的代換化為1-u%5E2%2Bu%5E2

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cint%20%5Cfrac%7B1%7D%7B1-u%5E2%7D%5Cmathrm%7Bd%7Du%2B%5Cint%20%5Cfrac%7Bu%5E2%7D%7B(1-u%5E2)%5E2%7D%5Cmathrm%7Bd%7Du%5C%5C%0A%26%3D%5Ccosh%5E%7B-1%7Du%2B%5Cint%5Cfrac%7B1%7D%7B2%7D%20u%5Cmathrm%7Bd%7D(%5Cfrac%7B1%7D%7B1-u%5E2%7D%20)%5C%5C%0A%26%3D%5Ccosh%5E%7B-1%7Du%2B%5Cfrac%7B1%7D%7B2%7D%20%20%5Cfrac%7Bu%7D%7B1-u%5E2%7D-%5Cfrac%7B1%7D%7B2%7D%5Cint%20%5Cfrac%7B1%7D%7B1-u%5E2%7D%5Cmathrm%7Bd%7Du%20%20%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7B2%7D%20%5Ccosh%5E%7B-1%7Du%2B%5Cfrac%7B1%7D%7B2%7D%20%20%5Cfrac%7Bu%7D%7B1-u%5E2%7D%0A%5Cend%7Balign%7D

再回代即可


當(dāng)然,這題也可以用雙元法

這個是在混知乎的時候?qū)W了點(diǎn)皮毛(方法源自虛調(diào)子),要有一定基礎(chǔ)才行,新手姑且將p,q理解為分別代指那背后的兩個函數(shù)吧

%5Csqrt%7Bx-%5Csqrt%7Bx%7D%20%7D%20%3D%5Csqrt%7B(%5Csqrt%7Bx%7D-%5Cfrac%7B1%7D%7B2%7D)%5E2-%5Cfrac%7B1%7D%7B4%7D%20%20%20%7D

p%3D%5Csqrt%7Bx%7D%20-%5Cfrac%7B1%7D%7B2%7D%20%2Cq%3D%5Csqrt%7Bx-%5Csqrt%7Bx%7D%20%7D%20,有:

p%5E2-q%5E2%3D%5Cfrac%7B1%7D%7B4%7D%20%5CRightarrow%20p%5Cmathrm%7Bd%7D%20p%3Dq%5Cmathrm%7Bd%7D%20q

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cint%20%5Cfrac%7B1%7D%7Bq%7D%5Cmathrm%7Bd%7D%20%5B(p%2B%5Cfrac%7B1%7D%7B2%7D%20)%5E2%5D%20%5C%5C%0A%26%3D2%5Cint%20%5Cfrac%7Bp%7D%7Bq%7D%20%5Cmathrm%7Bd%7Dp%2B%5Cint%20%5Cfrac%7B1%7D%7Bq%7D%20%5Cmathrm%7Bd%7Dp%5C%5C%0A%26%3D2%5Cint%20%5Cmathrm%7Bd%7Dq%2B%5Cint%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bp%5E2-%5Cfrac%7B1%7D%7B4%7D%20%7D%20%7D%20%5Cmathrm%7Bd%7Dp%5C%5C%0A%26%3D2q%2B%5Ccosh%5E%7B-1%7D2p%5C%5C%0A%26%3D2%5Csqrt%7Bx-%5Csqrt%7Bx%7D%20%7D%20%2B%5Ccosh%5E%7B-1%7D(2%5Csqrt%7Bx%7D%20-1)%0A%5Cend%7Balign%7D

(3)%5Cint%20%5Cfrac%7Bx%5E2%7D%7B(x%5Csin%20x%2B%5Ccos%20x)%5E2%7D%5Cmathrm%7Bd%7Dx

有點(diǎn)難度的積分 Integral of x^2/(x sinx + cosx)^2 dx

這里給出一個比較妙的方法:湊輔助角

對于出現(xiàn)x%5Csin%20x%2B%5Ccos%20x%2Cx%5Csin%20x-%5Ccos%20x這種玩意可以考慮用

%5Cbegin%7Balign%7D%0A%26x%5Csin%20x%2B%5Ccos%20x%5C%5C%0A%3D%26%5Csqrt%7B1%2Bx%5E2%7D(%5Cfrac%7Bx%7D%7B%5Csqrt%7B1%2Bx%5E2%7D%7D%20%5Csin%20x%2B%5Cfrac%7B1%7D%7B%5Csqrt%7B1%2Bx%5E2%7D%7D%20%5Ccos%20x)%20%5C%5C%0A%3D%26%5Csqrt%7B1%2Bx%5E2%7D%5Ccos%20(x-%5Ctan%5E%7B-1%7Dx)%0A%5Cend%7Balign%7D

于是%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%3D%5Cint%20%5Cfrac%7Bx%5E2%7D%7B(1%2Bx%5E2)%5Ccos%5E2(x-%5Ctan%5E%7B-1%7Dx)%7D%5Cmathrm%7Bd%7Dx

注意到%5Cmathrm%7Bd%7D(x-%5Ctan%5E%7B-1%7Dx)%3D%5Cfrac%7Bx%5E2%7D%7Bx%5E2%2B1%7D%5Cmathrm%7Bd%7Dx

于是

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cint%20%5Csec%5E2(%7B%5Ccolor%7BRed%7D%20%7Bx-%5Ctan%5E%7B-1%7Dx%7D%7D%20)%5Cmathrm%7Bd%7D(%7B%5Ccolor%7BRed%7D%20%7Bx-%5Ctan%5E%7B-1%7Dx%7D%7D%20)%5C%5C%0A%26%3D%5Ctan%20(%7B%5Ccolor%7BRed%7D%20%7Bx-%5Ctan%5E%7B-1%7Dx%7D%7D)%0A%5Cend%7Balign%7D

ps:上述法參考于無理函數(shù)君的解答

另外一個視頻是變式:求不定積分 ∫(x^2+20)/(xsin(x)+5cos(x))^2 dx

也是將分母配輔助角公式,留給讀者當(dāng)練習(xí)吧[滑稽]

(4)%5Cint%20%5Cfrac%7B1%7D%7Bx%5E2%5Csqrt%5B4%5D%7B(x%5E4%2B1)%5E3%7D%20%7D%20%5Cmathrm%7Bd%7Dx

有點(diǎn)難度的積分 Integral of 1/(x^2 Power[(x^4 + 1)^3, (4)^-1]) dx

這就又是用切比雪夫定理啦,跟前兩題是一個題型

被積函數(shù)化成二項(xiàng)微分式,即x%5E%7B-2%7D(x%5E4%2B1)%5E%7B-%5Cfrac%7B3%7D%7B4%7D%20%7D

屬于情形三,于是令u%5E4%3D%5Cfrac%7B1%2Bx%5E4%7D%7Bx%5E4%7D%20

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D-%5Cint%20x%5E3(x%5E4%2B1)%5E%7B-%5Cfrac%7B3%7D%7B4%7D%20%7Du%5E3%5Cmathrm%7Bd%7Du%5C%5C%0A%26%3D-%5Cint%20%20%5Cmathrm%7Bd%7Du%5C%5C%0A%26%3D-u%5C%5C%0A%26%3D-%5Cfrac%7B%5Csqrt%5B4%5D%7B1%2Bx%5E4%7D%20%7D%7Bx%7D%20%0A%5Cend%7Balign%7D

在視頻有點(diǎn)難度的積分Integral of (x^6 + x^3) Power[x^3 + 2, (3)^-1] dx評論區(qū)有網(wǎng)友提及了一個積分:%5Cint%20(x%5E3-3)%5E%7B-%5Cfrac%7B1%7D%7B3%7D%20%7D%5Cmathrm%7Bd%7Dx

就也是用切比雪夫定理,屬于情形三

%5Cfrac%7Bx%5E3-3%7D%7Bx%5E3%7D%20%3Du%5E3,最終化為:%5Cint%20%5Cfrac%7Bt%7D%7B1-t%5E3%7D%5Cmathrm%7Bd%7Dt%20%20

裂項(xiàng)后逐項(xiàng)積分再回代即可

還有幾道類似的題當(dāng)練習(xí)

求不定積分 ∫x Sqrt[1 - x^4] dx

求不定積分 Integral of x^5/Sqrt[x^3 + 1] dx

%5Cint%20(x%5E2%2B1)%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%5Cmathrm%7Bd%7Dx

評論區(qū)里的積分 Integral of (x^2 + 1)^(3/2) dx

這題有常規(guī)的三角換元x%3D%5Ctan%20t的做法和雙曲換元x%3D%5Csinh%20t的做法。

而如果這題用雙元法的話會爽快很多

前置結(jié)論:(圖片)

y%3D%5Csqrt%7Bx%5E2%2B1%7D%20,則y%5E2-x%5E2%3D1

%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%3D%5Cint%20y%5E3%5Cmathrm%7Bd%7Dx

遞推式賦值%7B%5Ccolor%7BRed%7D%20%7Bp%7D%7D%20%5Cto%20y%2C%7B%5Ccolor%7BDodgerBlue%7D%20%7Bq%7D%7D%20%5Cto%20x%2C%5Clambda%20%3D1

賦值n%3D3得:

4%5Cint%20y%5E3%5Cmathrm%7Bd%7Dx%3Dy%5E3x%2B3%5Cint%20y%5Cmathrm%7Bd%7Dx

賦值n%3D1得:

2%5Cint%20y%5Cmathrm%7Bd%7Dx%3Dyx%2B%5Cint%20y%5E%7B-1%7D%5Cmathrm%7Bd%7Dx

其中

%5Cint%20y%5E%7B-1%7D%5Cmathrm%7Bd%7Dx%3D%5Cint%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%5E2%2B1%7D%20%7D%5Cmathrm%7Bd%7Dx%3D%5Csinh%5E%7B-1%7Dx

③代入②,②代入①得:

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cint%20y%5E3%5Cmathrm%7Bd%7Dx%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7B4%7D%20xy%5E3%2B%5Cfrac%7B3%7D%7B8%7D%20xy%2B%5Cfrac%7B3%7D%7B8%7D%5Csinh%5E%7B-1%7Dx%20%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7B4%7D%20x(1%2Bx%5E2)%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%2B%5Cfrac%7B3%7D%7B8%7D%20x%5Csqrt%7B1%2Bx%5E2%7D%20%2B%5Cfrac%7B3%7D%7B8%7D%5Csinh%5E%7B-1%7Dx%20%5C%5C%0A%5Cend%7Balign%7D

ps:雙元點(diǎn)火公式推導(dǎo)參考筆者在知乎寫的一篇小水文:

https://zhuanlan.zhihu.com/p/641800651

%5Cint%20%5Cfrac%7Bx%5E3%7D%7B(1-x%5E2)%5E5%7D%20%5Cmathrm%7Bd%7Dx

網(wǎng)友分享的積分 Integral of x^3/(1 - x^2)^5 dx

y%3D%5Csqrt%7B1-x%5E2%7D%20,則

x%5E2%2By%5E2%3D1%5CRightarrow%20x%5Cmathrm%7Bd%7Dx%3D-y%5Cmathrm%7Bd%7Dy

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cint%20%5Cfrac%7Bx%5E3%7D%7By%5E%7B10%7D%7D%5Cmathrm%7Bd%7Dx%3D-%5Cint%20%5Cfrac%7Bx%5E2%7D%7By%5E%7B9%7D%7D%5Cmathrm%7Bd%7Dy%5C%5C%0A%26%3D-%5Cint%20%5Cfrac%7B1-y%5E2%7D%7By%5E%7B9%7D%7D%5Cmathrm%7Bd%7Dy%3D%5Cint%20-%5Cfrac%7B1%7D%7By%5E9%7D%20%2B%5Cfrac%7B1%7D%7By%5E7%7D%5Cmathrm%7Bd%7Dy%20%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7B8y%5E8%7D-%5Cfrac%7B1%7D%7B6y%5E6%7D%20%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7B8(1-x%5E2)%5E4%7D-%5Cfrac%7B1%7D%7B6(1-x%5E2)%5E3%7D%0A%5Cend%7Balign%7D


ps:其他方法抑或如評論區(qū)所言,把一個x方后面湊x^2,再湊1-x^2

再如積分對比:1/(x^2 Sqrt[1 + x^2]) vs x^2/Sqrt[1 + x^2]

簡單積分:Integral of Sqrt[x]/(1 + Power[x, (3)^-1]) dx

簡單積分:Integral of 1/(Sqrt[x] + Power[x, (3)^-1]) dx

這些都可以用切比雪夫定理求解,也可以嘗試用雙元法

到此阿B的限制的公式數(shù)居然還沒滿,那就再水幾道題...

%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B1%7D%7B(x%2B%5Csqrt%7B1%2Bx%5E2%7D%20)%5E2%7D%5Cmathrm%7Bd%7Dx

積分 1/(x + Sqrt[1 + x^2])^2,從 0 到 ∞

這題用雙曲換元應(yīng)該是最快的

x%3D%5Csinh%20t

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%20%5Cfrac%7B1%7D%7B(%5Csinh%20t%2B%5Ccosh%20t)%5E2%7D%20%5Ccdot%20%5Ccosh%20t%5Cmathrm%7Bd%7Dt%20%5C%5C%0A%26%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%20%5Cfrac%7B1%7D%7Be%5E%7B2t%7D%7D%20%5Ccdot%20%5Cfrac%7Be%5Et%2Be%5E%7B-t%7D%7D%7B2%7D%20%5Cmathrm%7Bd%7Dt%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7B2%7D%20%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%20e%5E%7B-t%7D%2Be%5E%7B-3t%7D%20%5Cmathrm%7Bd%7Dt%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7B2%7D(-e%5E%7B-t%7D-%5Cfrac%7B1%7D%7B3%7De%5E%7B-3t%7D%20)%7C%20_%7B0%7D%5E%7B%5Cinfty%20%7D%5C%5C%0A%26%3D%5Cfrac%7B2%7D%7B3%7D%0A%5Cend%7Balign%7D

ps:原專欄的方法為歐拉代換,也屬于脫去二次根式的一種暴力但比較普適的方法

%5Cint%20%5Cln%20(%5Csqrt%7Bx%2B1%7D%2B%5Csqrt%7Bx%7D%20%20)%5Cmathrm%7Bd%7Dx

有點(diǎn)難度的積分 Integral of ln (Sqrt[x + 1] + Sqrt[x]) dx

雙曲換元,令x%3D%5Csinh%5E2t

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cint%20%5Cln%20(%5Ccosh%20t%2B%5Csinh%20t)%5Cmathrm%7Bd%7D(%5Csinh%5E2t)%5C%5C%0A%26%3Dt%5Cmathrm%7Bd%7D(%5Csinh%5E2t)%3Dt%5Csinh%5E2t-%5Cint%20%5Csinh%5E2t%5Cmathrm%7Bd%7Dt%20%5C%5C%0A%26%3Dt%5Csinh%5E2t-%20%5Cint%20%5Cfrac%7B%5Ccosh2t-1%7D%7B2%7D%20%5Cmathrm%7Bd%7Dt%20%5C%5C%0A%26%3Dt%5Csinh%5E2t-%20%5Cfrac%7B1%7D%7B4%7D%5Csinh%202t%2B%5Cfrac%7B1%7D%7B2%7Dt%5C%5C%0A%26%3Dx%5Csinh%5E%7B-1%7D%5Csqrt%7Bx%7D-%20%5Cfrac%7B1%7D%7B2%7D%5Csinh%20t%5Ccosh%20t%2B%5Cfrac%7B1%7D%7B2%7D%5Csinh%5E%7B-1%7D%5Csqrt%7Bx%7D%5C%5C%0A%26%3D(x%2B%5Cfrac%7B1%7D%7B2%7D%20)%5Csinh%5E%7B-1%7D%5Csqrt%7Bx%7D-%20%5Cfrac%7B1%7D%7B2%7D%5Csqrt%7Bx%7D%5Csqrt%7B1%2Bx%7D%20%0A%5Cend%7Balign%7D

總結(jié)

本篇主要有如下幾點(diǎn)值得掌握的:

(1)切比雪夫定理(二項(xiàng)微分式)

參考鏈接:

https://baike.baidu.com/item/%E4%BA%8C%E9%A1%B9%E5%BE%AE%E5%88%86%E5%BC%8F/643325

以后遇到這類型的積分就可以直接套公式解決啦~

(2)對于出現(xiàn)x%5Csin%20x%2B%5Ccos%20x%2Cx%5Ccos%20x%2B%5Csin%20x這種形式的積分,可以考慮配湊輔助角

(3)雙元遞推式,推導(dǎo)參考鏈接:

https://zhuanlan.zhihu.com/p/641800651

另外,筆者的知乎小水號道同者也可以關(guān)注下哦[滑稽]


可能是在知乎和虛佬的雙元群里混出點(diǎn)“成效”了,現(xiàn)在看這些不定積分題真的是和諧溫柔很多。群里的積分大多長這樣的

復(fù)雜的形式+陰間的換元,令人望而生畏,可謂看著都長腦子(


估計很多都得借助matlab,mma這種軟件分析才能湊出數(shù)來。而且直接扔給計算機(jī)算還未必能算出。也或許還有命題的線路沒掌握,有待課余時間去摸索(


而我只能依靠一些想對簡單的一些題試著去模仿并發(fā)掘邏輯,能自學(xué)取得這點(diǎn)小成效已經(jīng)很幸運(yùn)聊~

水了很多期專欄和動態(tài),這篇終于算有些知識含量了。有其他要補(bǔ)充的話歡迎在評論區(qū)留言~


Mathhouse中的一些積分題的評論 (共 條)

分享到微博請遵守國家法律
余干县| 宜宾市| 巨野县| 淮北市| 武鸣县| 南漳县| 米易县| 泸溪县| 辛集市| 拜泉县| 简阳市| 德江县| 江油市| 新巴尔虎左旗| 柘荣县| 黄梅县| 凯里市| 新野县| 嘉义市| 墨脱县| 托克托县| 红安县| 新营市| 永年县| 岫岩| 巴马| 根河市| 安达市| 塔河县| 岳池县| 清苑县| 鲁甸县| 岳西县| 长岛县| 泰安市| 灵丘县| 农安县| 丰城市| 新和县| 资阳市| 同江市|