25篇深度GNN最新研究,多視角方案解讀
本文轉(zhuǎn)載自【AI機器學(xué)習(xí)與知識圖譜】公眾號
在計算機視覺中,模型CNN隨著其層次加深可以學(xué)習(xí)到更深層次的特征信息,疊加64層或128層是十分正常的現(xiàn)象,且能較淺層取得更優(yōu)的效果。
圖卷積神經(jīng)網(wǎng)絡(luò)GCNs是一種針對圖結(jié)構(gòu)數(shù)據(jù)的深度學(xué)習(xí)方法,但是目前大多數(shù)的GCN模型都是淺層的,如GCN,GAT模型都是在2層時取得最優(yōu)效果,隨著加深模型效果就會大幅度下降;GCN隨著模型層次加深會出現(xiàn)Over-Smoothing問題,Over-Smoothing既相鄰的節(jié)點隨著網(wǎng)絡(luò)變深就會越來越相似,最后學(xué)習(xí)到的nodeembedding便無法區(qū)分,模型效果下降。
為什么要將GNN做深,DeeperGNN適用于解決什么問題:少標(biāo)簽半監(jiān)督節(jié)點分類;少特征半監(jiān)督節(jié)點分類。下面再給出幾個概念解釋。
1. Over-fitting:在CNN卷積神經(jīng)網(wǎng)絡(luò)中,若CNN網(wǎng)絡(luò)結(jié)構(gòu)過于復(fù)雜過于Deep,且數(shù)據(jù)量有限的情況下,便會出現(xiàn)Over-fitting問題,Over-fitting就是指模型對于訓(xùn)練數(shù)據(jù)過度學(xué)習(xí),學(xué)習(xí)到訓(xùn)練數(shù)據(jù)本身而不是訓(xùn)練數(shù)據(jù)的規(guī)律,導(dǎo)致無法在測試集上準(zhǔn)確預(yù)測的情況。
2. Over-Smoothing:在GNN圖神經(jīng)網(wǎng)絡(luò)中,由于圖本身結(jié)構(gòu)上節(jié)點與節(jié)點之間相互連接的特性,并且圖神經(jīng)網(wǎng)絡(luò)一般是通過鄰域匯聚或隨機游走的方式進行表征學(xué)習(xí),因此當(dāng)圖網(wǎng)絡(luò)一旦變深,便會出現(xiàn)Over-Smoothing問題,Over-Smoothing指的是隨著圖神經(jīng)網(wǎng)絡(luò)加深,學(xué)習(xí)到的節(jié)點表征越來越相似,以至于無法區(qū)分,模型效果也將大幅下降。且在圖網(wǎng)絡(luò)中一般2 Layers時效果最佳。因此如何在DeepGNN中既能學(xué)到更深層次信息又能避免Over-Smoothing顯得至關(guān)重要。
▌必讀系列4篇
【GCNII】Simple and Deep Graph Convolutional Networks [ICML 2020]?
【GRAND】Graph Random Neural Networks for Semi-Supervised Learning on Graphs [NeurIPS 2020]
【DAGNN】Towards Deeper Graph Neural Networks [KDD 2020]
【APPNP】Predict then Propagate: Graph Neural Networks meet Personalized PageRank [ICLR 2019]
▌Guohao Li系列3篇
Guohao Li一直在跟進深度GNN的研究,必讀。
【Guohao Li】個人首頁:https://ghli.org/【Guohao Li】
DeepGCNs: Can GCNs Go as Deep as CNNs? [ICCV 2019]
【Guohao Li】DeeperGCN: All You Need to Train Deeper GCNs [arXiv 2020]
【Guohao Li】Training Graph Neural Networks with 1000 Layers [ICML 2021]
▌2021年最新4篇推薦
Adaptive Universal Generalized PageRank Graph Neural Network [ICLR 2021]
Graph Neural Networks Inspired by Classical Iterative Algorithms [ICML 2021]
AdaGCN: Adaboosting Graph Convolutional Networks into Deep Models [ICLR 2021]
Adaptive Universal Generalized PageRank Graph Neural Network [ICLR 2021]
▌2020年10篇推薦
【DropEdge】Towards Deep Graph Convolutional Networks on Node Classification [ICLR 2020]
【PairNorm】Tackling Oversmoothing in GNNs [ICLR 2020]
Towards Deeper Graph Neural Networks with Differentiable Group Normalization [NeurIPS 2020]
Scattering GCN: Overcoming Oversmoothness in Graph Convolutional Networks [NeurIPS 2020]
Bayesian Graph Neural Networks with Adaptive Connection Sampling [ICML 2020]
Continuous Graph Neural Networks [ICML 2020]
Graph Neural Networks Exponentially Lose Expressive Power for Node Classification [ICLR 2020]
Measuring and Improving the Use of Graph Information in Graph Neural Networks [ICLR 2020]
Measuring and Relieving the Over-smoothing Problem for Graph Neural Networks from the Topological View [AAAI 2020]
【JK-Net】Representation Learning on Graphs with Jumping Knowledge Networks [ICML 2018]
▌其他4篇
Deep Graph Neural Networks with Shallow Subgraph Samplers [arXiv 2020]
Tackling Over-Smoothing for General Graph Convolutional Networks [arXiv 2020]
Effective Training Strategies for Deep Graph Neural Networks [arXiv 2020]
Revisiting Over-smoothing in Deep GCNs [arXiv 2020]
關(guān)注【學(xué)姐帶你玩AI】
論文推薦應(yīng)有盡有
