2023.03.23 ArXiv精選
關注領域:
AIGC
3D computer vision learning
Fine-grained learning
GNN
其他
聲明
論文較多,時間有限,本專欄無法做文章的講解,只挑選出符合PaperABC研究興趣和當前熱點問題相關的論文,如果你的research topic和上述內(nèi)容有關,那本專欄可作為你的論文更新源或Paper reading list.

Paper list:
今日ArXiv共更新134篇
NeRF
SHERF: Generalizable Human NeRF from a Single Image
https://arxiv.org/pdf/2303.12791.pdf

南洋理工,ziwei Liu老師團隊的工作,實現(xiàn)了第一個輸入單張人體圖像,實現(xiàn)3D人體重建.
Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions
https://arxiv.org/pdf/2303.12789.pdf

UC伯克利的工作,能夠?qū)崿F(xiàn)基于文本的3D場景編輯,屬于文本引導的NeRF編輯工作.可拓展到真實場景和大規(guī)模場景.
FeatureNeRF: Learning Generalizable NeRFs by Distilling Foundation Models
https://arxiv.org/pdf/2303.12786.pdf

Foundation Model促進NeRF泛化性,促進其在其他下游任務,語義理解和解析等都能取得不錯的性能.
Pre-NeRF 360: Enriching Unbounded Appearances for Neural Radiance Fields
https://arxiv.org/pdf/2303.12234.pdf

比Mip-NeRF 360性能還要強大的Pre-NeRF.
AIGC
A PERCEPTUAL QUALITY ASSESSMENT EXPLORATION FOR AIGC IMAGES
https://arxiv.org/pdf/2303.12618.pdf

上海交大的工作,研究了如何評估AIGC產(chǎn)生的圖片質(zhì)量.
SALAD: Part-Level Latent Diffusion for 3D Shape Generation and Manipulation
https://arxiv.org/pdf/2303.12236.pdf

KAIST的工作.主要提出了使用Diffusion model來實現(xiàn)part-level的3D shape的生成和編輯.
VLP
Is BERT Blind? Exploring the Effect of Vision-and-Language Pretraining on Visual Language Understanding
https://arxiv.org/pdf/2303.12513.pdf

本文探討了,視覺語言預訓練能否促進純文本任務.
CLIP2 : Contrastive Language-Image-Point Pretraining from Real-World Point Cloud Data
https://arxiv.org/pdf/2303.12417.pdf

華為諾亞的工作.探討了CLIP如何促進3D場景級別的理解.
醫(yī)學圖像
Less is More: Unsupervised Mask-guided Annotated CT Image Synthesis with Minimum Manual Segmentations
https://arxiv.org/pdf/2303.12747.pdf
