最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Calculus] Napkin Ring Problem

2021-08-14 21:25 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

The napkin ring problem dates back to Edo Japan. Seki Kowa (1642 - 1708), the leading Japanese mathematician at the time was the first person to have solved this problem using a form of integral calculus called ''Enri''. Seki Kowa called the shape an “arc ring”.

The animation below shows a central cross-section of a sphere of radius?r%20 through which a centrally placed cylinder of radius a has been drilled out and the material removed. The remaining shape is called a napkin ring. Determine the volume of the napkin ring.


【Solution】

Consider the diagram of the cross-section of the napkin ring below. Let the radius of the sphere be %20r. Let radius of the cylindrical hole be a, and half the height of the cylindrical hole be h.

To compute the volume of the napkin ring, observe that its volume is equal to:

V%20%3D%20%7BV%7D_%7Bsphere%7D%20-%20%7BV%7D_%7Bcylinder%7D%20-%202%20%7BV%7D_%7Bspherical%20%5C%3B%20cap%7D%20


The volume of the sphere and the cylinder are well known:


%7BV%7D_%7Bsphere%7D%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Br%7D%5E%7B3%7D

%7BV%7D_%7Bcylinder%7D%20%20%3D%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D

Note that

a%5E2%20%3D%20r%5E2-h%5E2%20

Use integration to compute the volume of a spherical cap.


%7BV%7D_%7Bspherical%20%5C%3B%20cap%7D%20%3D%20%5Cint_%7Bh%7D%5E%7Br%7D%20%5Cpi%20%5Cleft(%7Br%7D%5E%7B2%7D%20-%20%7By%7D%5E%7B2%7D%20%5Cright)%20dy

%7BV%7D_%7Bspherical%20%5C%3B%20cap%7D%20%3D%20%5Cpi%20%5Cleft(%5Cfrac%7B2%7Br%7D%5E%7B3%7D%7D%7B3%7D%20-%20%7Br%7D%5E%7B2%7D%20h%20%2B%20%5Cfrac%7B%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20%5Cright)%20


Hence, the volume of the napkin ring is:

%20V%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Br%7D%5E%7B3%7D%20-%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D%20-%202%20%5Cpi%20%5Cleft(%5Cfrac%7B2%7Br%7D%5E%7B3%7D%7D%7B3%7D%20-%20%7Br%7D%5E%7B2%7D%20h%20%2B%20%5Cfrac%7B%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20%5Cright)

%20V%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Br%7D%5E%7B3%7D%20-%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D%20-%20%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%7Br%7D%5E%7B3%7D%20%2B%202%5Cpi%20%7Br%7D%5E%7B2%7D%20h%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20

%20V%20%3D%20-%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D%20%2B%202%5Cpi%20%7Br%7D%5E%7B2%7D%20h%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20


Since a%5E2%20%3D%20r%5E2-h%5E2%20, we get


%20V%20%3D%20-%202%5Cpi%20h%20%5Cleft(%7Br%7D%5E%7B2%7D%20-%20%7Bh%7D%5E%7B2%7D%5Cright)%20%2B%202%5Cpi%20%7Br%7D%5E%7B2%7D%20h%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20

%20V%20%3D%202%5Cpi%20%7Bh%7D%5E%7B3%7D%20%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20

V%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Bh%7D%5E%7B3%7D


The volume of the napkin ring expressed in terms of the height of the cylindrical hole, where H%3D2h, is:

V%20%3D%20%5Cfrac%7B%5Cpi%7D%7B6%7D%20%7BH%7D%5E%7B3%7D

Note that this volume is independent of the radius of the sphere, who would have guessed! This looks unbelievable at first because it means that if you core out any sphere of any size so that the remaining rings have the same height, those rings will also have the same volume!



[Calculus] Napkin Ring Problem的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
张家港市| 彭州市| 山东| 宣威市| 板桥市| 哈密市| 陈巴尔虎旗| 韩城市| 神木县| 兴义市| 乐安县| 乌拉特前旗| 璧山县| 兴山县| 绥棱县| 西青区| 彭山县| 当涂县| 贡山| 深圳市| 临猗县| 海口市| 镇赉县| 米泉市| 北流市| 博野县| 蓝山县| 酉阳| 崇仁县| 鹿泉市| 上饶县| 民权县| 陕西省| 突泉县| 许昌县| 洪雅县| 荆门市| 萍乡市| 北碚区| 蓝田县| 彭阳县|