【人臉識別】基于FISHER線性判決實現人臉識別含Matlab源碼
1 簡介
人臉識別是生物特征鑒別技術的一個主要方向,與其他生物特征相比,人臉識別具有主動性,非侵犯性和用戶友好等許多優(yōu)點,多年來一直受到許多研究者的關注.從最初的基于幾何的方法到基于統計等復雜特征的方法,人臉識別已經發(fā)展了很多算法.目前基于統計特征的線性方法在人臉識別中發(fā)展的比較成熟,但是由于人臉識別涉及光照,表情,姿態(tài)等問題,線性方法在實際應用中表現的遠遠不夠.因此,將線性方法拓展到非線性領域以提高識別率是一個亟待解決的問題.


2 部分代碼
function varargout = faceCore(varargin)
% FACECORE M-file for faceCore.fig
% ? ? ?FACECORE, by itself, creates a new FACECORE or raises the existing
% ? ? ?singleton*.
%
% ? ? ?H = FACECORE returns the handle to a new FACECORE or the handle to
% ? ? ?the existing singleton*.
%
% ? ? ?FACECORE('CALLBACK',hObject,eventData,handles,...) calls the local
% ? ? ?function named CALLBACK in FACECORE.M with the given input arguments.
%
% ? ? ?FACECORE('Property','Value',...) creates a new FACECORE or raises the
% ? ? ?existing singleton*. ?Starting from the left, property value pairs are
% ? ? ?applied to the GUI before faceCore_OpeningFunction gets called. ?An
% ? ? ?unrecognized property name or invalid value makes property application
% ? ? ?stop. ?All inputs are passed to faceCore_OpeningFcn via varargin.
%
% ? ? ?*See GUI Options on GUIDE's Tools menu. ?Choose "GUI allows only one
% ? ? ?instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Copyright 2002-2003 The MathWorks, Inc.
% Edit the above text to modify the response to help faceCore
% Last Modified by GUIDE v2.5 28-May-2009 10:21:26
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', ? ? ? mfilename, ...
? ? ? ? ? ? ? ? ? 'gui_Singleton', ?gui_Singleton, ...
? ? ? ? ? ? ? ? ? 'gui_OpeningFcn', @faceCore_OpeningFcn, ...
? ? ? ? ? ? ? ? ? 'gui_OutputFcn', ?@faceCore_OutputFcn, ...
? ? ? ? ? ? ? ? ? 'gui_LayoutFcn', ?[] , ...
? ? ? ? ? ? ? ? ? 'gui_Callback', ? []);
if nargin && ischar(varargin{1})
? ?gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
? ?[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
? ?gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before faceCore is made visible.
function faceCore_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject ? ?handle to figure
% eventdata ?reserved - to be defined in a future version of MATLAB
% handles ? ?structure with handles and user data (see GUIDATA)
% varargin ? command line arguments to faceCore (see VARARGIN)
% Choose default command line output for faceCore
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes faceCore wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = faceCore_OutputFcn(hObject, eventdata, handles)
% varargout ?cell array for returning output args (see VARARGOUT);
% hObject ? ?handle to figure
% eventdata ?reserved - to be defined in a future version of MATLAB
% handles ? ?structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject ? ?handle to pushbutton1 (see GCBO)
% eventdata ?reserved - to be defined in a future version of MATLAB
% handles ? ?structure with handles and user data (see GUIDATA)
global TrainDatabasePath ;
TrainDatabasePath = uigetdir(strcat(matlabroot,'\work'), '訓練庫路徑選擇...' );
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject ? ?handle to pushbutton2 (see GCBO)
% eventdata ?reserved - to be defined in a future version of MATLAB
% handles ? ?structure with handles and user data (see GUIDATA)
global TestDatabasePath;
TestDatabasePath = uigetdir(strcat(matlabroot,'\work'), '測試庫路徑選擇...');
% --- Executes on button press in pushbutton3.
%function pushbutton3_Callback(hObject, eventdata, handles)
% hObject ? ?handle to pushbutton3 (see GCBO)
% eventdata ?reserved - to be defined in a future version of MATLAB
% handles ? ?structure with handles and user data (see GUIDATA)
%[filename,pathname]=uigetfile({'*.jpg';'*.bmp'},'');
%str=[pathname ?filename];
%im=imread(str);
%axes(handles.axes1);
%imshow(im);
% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject ? ?handle to pushbutton4 (see GCBO)
% eventdata ?reserved - to be defined in a future version of MATLAB
% handles ? ?structure with handles and user data (see GUIDATA)
global TrainDatabasePath ;
global TestDatabasePath;
global T;
T = CreateDatabase(TrainDatabasePath);
%[m V_PCA V_Fisher ProjectedImages_Fisher] = FisherfaceCore(T);
% --- Executes on button press in pushbutton5.
function pushbutton9_Callback(hObject, eventdata, handles)
% hObject ? ?handle to pushbutton5 (see GCBO)
% eventdata ?reserved - to be defined in a future version of MATLAB
% handles ? ?structure with handles and user data (see GUIDATA)
global im;
[filename,pathname]=uigetfile({'*.jpg';'*.bmp'},'選擇測試圖片...');
str=[pathname ?filename];
im=imread(str);
axes(handles.axes1);
imshow(im);
% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject ? ?handle to pushbutton6 (see GCBO)
% eventdata ?reserved - to be defined in a future version of MATLAB
% handles ? ?structure with handles and user data (see GUIDATA)
%T = CreateDatabase(TrainDatabasePath);
global T;
global im;
global TrainDatabasePath ;
[m V_PCA V_Fisher ProjectedImages_Fisher] = FisherfaceCore(T);
OutputName = Recognition(im, m, V_PCA, V_Fisher, ProjectedImages_Fisher);
SelectedImage = strcat(TrainDatabasePath,'\',OutputName);
SelectedImage = imread(SelectedImage);
axes(handles.axes2);
imshow(SelectedImage);
%title('Equivalent Image');
% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
% hObject ? ?handle to pushbutton7 (see GCBO)
% eventdata ?reserved - to be defined in a future version of MATLAB
% handles ? ?structure with handles and user data (see GUIDATA)
clear all;
clc
close(gcf);
3 仿真結果


4 參考文獻
[1]王平. 基于非線性Fisher判決的人臉識別方法研究[D]. 中國海洋大學.
博主簡介:擅長智能優(yōu)化算法、神經網絡預測、信號處理、元胞自動機、圖像處理、路徑規(guī)劃、無人機等多種領域的Matlab仿真,相關matlab代碼問題可私信交流。
部分理論引用網絡文獻,若有侵權聯系博主刪除。
