【圖像融合】基于稀疏表示多光譜圖像融合含Matlab源碼
1 簡介
高分辨率的多光譜圖像應(yīng)用廣泛,比如變化監(jiān)測,目標(biāo)識別,場景解譯.通常,商用光學(xué)衛(wèi)星能夠同時提供高空間分辨率的全色圖像和低分辨率的多光譜圖像.物理條件的限制使得單一傳感器無法獲得高質(zhì)量的多光譜圖像.于是,利用全色圖像的細(xì)節(jié)來提高多光譜圖像的空間分辨率這一思路受到了廣大學(xué)者的關(guān)注.全色和多光譜圖像融合的目標(biāo)在于同時提高空間分辨率和減小光譜失真.實際上,由于全色圖像的加入,融合圖像的空間分辨率可以得到顯著提高,但是,光譜畸變也會隨之產(chǎn)生. 稀疏表示理論,作為一種新的信號表示方法,已經(jīng)應(yīng)用在許多圖像處理領(lǐng)域.采用過完備字典的稀疏表示能夠使分解系數(shù)更稀疏,更能反映信號的本質(zhì)特征和內(nèi)在結(jié)構(gòu).針對全色和多光譜圖像融合這一難題,本文提出了基于稀疏表示的融合方法.
2 部分代碼
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
close all;clear all;
setup;
Verbose='on';
generate=1;subMeth='PCA';FusMeth='Sparse';
scale=1;SNR_R=inf;seed=1;
%% Generate the data
[name_image,band_remove,band_set,nr,nc,N_band,nb_sub,X_real,XH,XHd,XHd_int,XM,VXH,VXM,psfY,psfZ_unk,...
? ?sigma2y_real,sigma2z_real,SNR_HS,SNR_MS,miu_x_real,s2_real,P_inc,P_dec,eig_val]=Para_Set(seed,scale,subMeth,SNR_R);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Sparse fusion consists three parts
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Step 1: Learn the rough estimation
learn_dic=1;train_support=1;Para_Prior_Initial;
X_source=RoughEst(XM,XH,XHd,psfY,nb_sub,P_dec);
%% Step 2: Learn the dictionary
[time_LD,Dic,supp]=Dic_Para(X_source,P_inc,learn_dic,train_support,X_real,0);
%% Step 3: Alternating optimization
[HSFusion.(FusMeth),Costime,diff_X,RMSE_sub,RMSE_org,tau_d_set,VXd_dec]=AlterOpti(X_source,XH,XM,psfY,...
? ?psfZ_unk,sigma2y_real,sigma2z_real,P_dec,P_inc,FusMeth,X_real,Dic,supp);
%% Evaluate the fusion results: Quantitative
[err_max.(FusMeth),err_l1.(FusMeth),err_l2.(FusMeth),SNR.(FusMeth),Q.(FusMeth),SAM_m.(FusMeth),RMSE_fusion.(FusMeth),...
? ?ERGAS.(FusMeth),DD.(FusMeth)] = metrics(X_real,HSFusion.(FusMeth),psfY.ds_r);
fprintf('%s Performance:\n SNR: %f\n RMSE: %f\n UIQI: %f\n SAM: %f\n ERGAS: %f\n DD: %f\n Time: %f\n',...
? ?FusMeth,SNR.(FusMeth),RMSE_fusion.(FusMeth),Q.(FusMeth),SAM_m.(FusMeth),ERGAS.(FusMeth),DD.(FusMeth),Costime.(FusMeth));
%% Display the fusion results: Qualitive
normColor = @(R)max(min((R-mean(R(:)))/std(R(:)),2),-2)/3+0.5;
temp_show=X_real(:,:,band_set);temp_show=normColor(temp_show);
figure(113);imshow(temp_show);title('Groundtruth')
temp_show=XHd_int(:,:,band_set);temp_show=normColor(temp_show);
figure(114);imshow(temp_show);title('HS image')
temp_show=mean(XM,3);temp_show=normColor(temp_show);
figure(115);imshow(temp_show);title('MS image')
temp_show=HSFusion.(FusMeth)(:,:,band_set);temp_show=normColor(temp_show);
figure(116);imshow(temp_show);title(['Fused image-' FusMeth])
name=[mat2str(clock) FusMeth '.mat'];save(name);
3 仿真結(jié)果




4 參考文獻(xiàn)
[1]肖新耀. "基于稀疏表示的全色和多光譜圖像融合方法的研究." 電子所博碩士學(xué)位論文 (2015).
博主簡介:擅長智能優(yōu)化算法、神經(jīng)網(wǎng)絡(luò)預(yù)測、信號處理、元胞自動機(jī)、圖像處理、路徑規(guī)劃、無人機(jī)等多種領(lǐng)域的Matlab仿真,相關(guān)matlab代碼問題可私信交流。
部分理論引用網(wǎng)絡(luò)文獻(xiàn),若有侵權(quán)聯(lián)系博主刪除。
