最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

形心、三重積分—柱坐標(biāo)系

2023-07-03 09:53 作者:編程會(huì)一點(diǎn)建模不太懂  | 我要投稿

題目選自2010年考研數(shù)學(xué)一

%5CvarOmega%20%3D%5Cleft%5C%7B%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20%7Cx%5E2%2By%5E2%5Cle%20z%5Cle%201%20%5Cright%5C%7D%20

求幾何體形心的豎坐標(biāo)%20%5Cbar%7Bz%7D

幾何體是拋物面與平面包圍部分

三維幾何體形心豎坐標(biāo)的定義是

%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bzdxdydz%7D%7D%7B%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bdxdydz%7D%7D%0A

其中

%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bzdxdydz%7D%3D%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7B%5Cint_%7Bx%5E2%2By%5E2%7D%5E1%7Bzdz%7Ddxdy%7D%0A

%3D%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7B%5Cfrac%7B1%7D%7B2%7Dz%5E2%5Cmid_%7Bx%5E2%2By%5E2%7D%5E%7B1%7Ddxdy%7D%0A

%3D%5Cfrac%7B1%7D%7B2%7D%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7B%5Cleft%5B%201-%5Cleft(%20x%5E2%2By%5E2%20%5Cright)%20%5E2%20%5Cright%5D%20dxdy%7D%0A

%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%20%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7Bdxdy%7D-%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7B%5Cleft(%20x%5E2%2By%5E2%20%5Cright)%20%5E2dxdy%7D%20%5Cright%5D%20%0A

%3D%5Cfrac%7B1%7D%7B2%7D%5Cpi%20-%5Cfrac%7B1%7D%7B2%7D%5Cint_0%5E%7B2%5Cpi%7D%7Bd%5Ctheta%7D%5Cint_0%5E1%7Br%5E4rdr%7D%0A

%3D%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Cfrac%7B%5Cpi%7D%7B6%7D%3D%5Cfrac%7B%5Cpi%7D%7B3%7D%0A

%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bdxdydz%7D%3D%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7B%5Cint_%7Bx%5E2%2By%5E2%7D%5E1%7Bdz%7Ddxdy%7D%0A

%3D%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7B%5Cleft%5B%201-%5Cleft(%20x%5E2%2By%5E2%20%5Cright)%20%5Cright%5D%20dxdy%7D%0A

%3D%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7Bdxdy%7D-%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7B%5Cleft(%20x%5E2%2By%5E2%20%5Cright)%20dxdy%7D%0A

%3D%5Cpi%20-%5Cint_0%5E%7B2%5Cpi%7D%7Bd%5Ctheta%7D%5Cint_0%5E1%7Br%5E2rdr%7D%0A

%3D%5Cpi%20-%5Cfrac%7B%5Cpi%7D%7B2%7D%3D%5Cfrac%7B%5Cpi%7D%7B2%7D%0A

%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bzdxdydz%7D%7D%7B%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bdxdydz%7D%7D%3D%5Cfrac%7B2%7D%7B3%7D%0A

題目分析:本題主要考察了形心、質(zhì)心等物理概念的定義和三重積分計(jì)算。

形心、質(zhì)心的定義

曲線的形心%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Cint%7Bxdl%7D%7D%7B%5Cint%7Bdl%7D%7D%5C%5C%0A%09%5Cbar%7By%7D%3D%5Cfrac%7B%5Cint%7Bydl%7D%7D%7B%5Cint%7Bdl%7D%7D%5C%5C%0A%09%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Cint%7Bzdl%7D%7D%7B%5Cint%7Bdl%7D%7D%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

曲線的質(zhì)心%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Cint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20xdl%7D%7D%7B%5Cint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dl%7D%7D%5C%5C%0A%09%5Cbar%7By%7D%3D%5Cfrac%7B%5Cint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20ydl%7D%7D%7B%5Cint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dl%7D%7D%5C%5C%0A%09%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Cint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20zdl%7D%7D%7B%5Cint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dl%7D%7D%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

曲面的形心%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Ciint%7BxdS%7D%7D%7B%5Ciint%7BdS%7D%7D%5C%5C%0A%09%5Cbar%7By%7D%3D%5Cfrac%7B%5Ciint%7BydS%7D%7D%7B%5Ciint%7BdS%7D%7D%5C%5C%0A%09%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Ciint%7BzdS%7D%7D%7B%5Ciint%7BdS%7D%7D%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

曲面的質(zhì)心%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Ciint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20xdS%7D%7D%7B%5Ciint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dS%7D%7D%5C%5C%0A%09%5Cbar%7By%7D%3D%5Cfrac%7B%5Ciint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20ydS%7D%7D%7B%5Ciint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dS%7D%7D%5C%5C%0A%09%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Ciint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20zdS%7D%7D%7B%5Ciint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dS%7D%7D%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

幾何體的形心%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Ciiint%7BxdV%7D%7D%7B%5Ciiint%7BdV%7D%7D%5C%5C%0A%09%5Cbar%7By%7D%3D%5Cfrac%7B%5Ciiint%7BydV%7D%7D%7B%5Ciiint%7BdV%7D%7D%5C%5C%0A%09%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Ciiint%7BzdV%7D%7D%7B%5Ciiint%7BdV%7D%7D%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

幾何體的質(zhì)心

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Ciiint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20xdV%7D%7D%7B%5Ciiint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dV%7D%7D%5C%5C%0A%09%5Cbar%7By%7D%3D%5Cfrac%7B%5Ciiint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20ydV%7D%7D%7B%5Ciiint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dV%7D%7D%5C%5C%0A%09%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Ciiint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20zdV%7D%7D%7B%5Ciiint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dV%7D%7D%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

其中%5Crho%20(x%2Cy%2Cz)是幾何圖形的密度函數(shù)

本題中三重積分的計(jì)算采用了“先一后二”的柱坐標(biāo)系計(jì)算方法,也可以采用“先二后一”的方法,即先對(duì)xy積分算出幾何體關(guān)于變量z截面面積函數(shù)A(z),在對(duì)變量z積分

%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bzdxdydz%7D%3D%5Cint_0%5E1%7Bzdz%7D%5Ciint%5Climits_%7BD%5Cleft(%20z%20%5Cright)%7D%7Bdxdy%7D%0A

其中D(z)是拋物面z%3Dx%5E2%2By%5E2的每一個(gè)水平截面區(qū)域

拋物面的每一個(gè)水平截面都是半徑為%5Csqrt%7Bz%7D的圓

所以%5Ciint%5Climits_%7BD%5Cleft(%20z%20%5Cright)%7D%7Bdxdy%7D%3D%5Cpi%20z%0A

%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bzdxdydz%7D%3D%5Cint_0%5E1%7Bzdz%7D%5Ciint%5Climits_%7BD%5Cleft(%20z%20%5Cright)%7D%7Bdxdy%7D%0A

%3D%5Cint_0%5E1%7Bz%5Cpi%20zdz%7D%3D%5Cpi%20%5Cint_0%5E1%7Bz%5E2dz%7D%3D%5Cfrac%7B%5Cpi%7D%7B3%7D%0A


形心、三重積分—柱坐標(biāo)系的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
项城市| 舒兰市| 塘沽区| 沈丘县| 玛多县| 鄂托克前旗| 韶山市| 田东县| 霸州市| 元氏县| 阳原县| 且末县| 景宁| 广平县| 昂仁县| 宣化县| 和静县| 河东区| 克拉玛依市| 仪陇县| 津市市| 峨边| 永嘉县| 香港 | 平阳县| 忻城县| 连平县| 恩施市| 义乌市| 南投市| 旺苍县| 瑞金市| 河北区| 竹山县| 通州区| 大足县| 固安县| 佛坪县| 肥城市| 萨嘎县| 楚雄市|