最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網 會員登陸 & 注冊

Banach代數中元素的譜

2022-11-12 15:18 作者:臥煙鈴  | 我要投稿

今天這一章呢其實就是把上一題坑給填了

%5Cmathscr%7BD%7Defination1%EF%BC%9A%E8%AE%BE%5Cmathscr%7BA%7D%E6%98%AF%E5%85%B7%E6%9C%89%E5%8D%95%E4%BD%8D%E5%85%83e%E7%9A%84Banach%E4%BB%A3%E6%95%B0

x%5Cin%20%5Cmathscr%7BA%7D%2C%5Clambda%5Cin%5Cmathbb%7BC%7D%2C%E8%8B%A5%20%5Cexists%20y%5Cin%20%5Cmathscr%7BA%7D%E4%BD%BF%E5%BE%97

(x-%5Clambda%20e)y%3Dy(x-%5Clambda%20e)%3De

%E5%8D%B3x-%5Clambda%20e%E5%8F%AF%E9%80%86%EF%BC%8C%E5%88%99%E7%A7%B0%5Clambda%E4%B8%BAx%E7%9A%84%E6%AD%A3%E5%88%99%E7%82%B9

x%E7%9A%84%E6%AD%A3%E5%88%99%E7%82%B9%E5%85%A8%E4%BD%93%E8%AE%B0%E4%B8%BA%5Crho(x)%3B

%E9%9D%9E%E6%AD%A3%E5%88%99%E7%82%B9%E8%AE%B0%E4%B8%BAx%E7%9A%84%E8%B0%B1%E7%82%B9%EF%BC%8C%E5%85%B6%E5%85%A8%E4%BD%93%E8%AE%B0%E4%BD%9C%5Csigma(x).

%5Cmathscr%7BL%7Demma2%EF%BC%9A%E8%AE%BE%5Cmathscr%7BA%7D%E6%98%AF%E8%B5%8B%E8%8C%83%E4%BB%A3%E6%95%B0%EF%BC%8Cx%5Cin%5Cmathscr%7BA%7D

%E5%88%99%5Clim_%7Bn%5Cto%20%5Cinfty%7D%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%E5%AD%98%E5%9C%A8%E4%B8%94%5Clim_%7Bn%5Cto%20%5Cinfty%7D%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%3D%5Cinf%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D

證明:

r%3D%5Cinf%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%EF%BC%8C%5Cvarliminf_%7Bn%0A%5Cto%20%5Cinfty%7D%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%5Cgeq%20r

%5Cforall%20%5Cvarepsilon%3E0%2C%E5%8F%96m%5Cin%5Cmathbb%7BZ%7D_%7Bx%3E0%7D%E4%BD%BF%E5%BE%97%5CVert%20x%5Em%5CVert%5E%7B%5Cfrac%7B1%7D%7Bm%7D%7D%3C%20r%2B%5Cvarepsilon

%5Cforall%20n%5Cin%5Cmathbb%7BZ%7D_%7Bx%3E0%7D%E6%9C%89n%3Dk_nm%2Bl_n%2C0%5Cleq%20l_n%3Cm

%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%3D%5CVert%20x%5E%7Bk_nm%2Bl_n%7D%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%5Cleq%5CVert%20x%5CVert%5E%7B%5Cfrac%7Bl_n%7D%7Bn%7D%7D%5CVert%20x%5Em%5CVert%5E%7B%5Cfrac%7Bk_n%7D%7Bn%7D%7D

%5Cleq%5CVert%20x%5CVert%5E%7B%5Cfrac%7Bl_n%7D%7Bn%7D%7D(r%2B%5Cvarepsilon)%5E%7B%5Cfrac%7Bmk_n%7D%7Bn%7D%7D

%5Cvarlimsup_%7Bn%0A%5Cto%20%5Cinfty%7D%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%5Cleq%20r%5Cimplies%20%5Clim_%7Bn%5Cto%20%5Cinfty%7D%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%3D%5Cinf%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D

%5Cmathbb%7BQ.E.D.%7D

%5Cmathscr%7BL%7Demma3%EF%BC%9A%E8%AE%BE%5Cmathscr%7BA%7D%E6%98%AF%E5%85%B7%E6%9C%89%E5%8D%95%E4%BD%8D%E5%85%83e%E7%9A%84Banach%E4%BB%A3%E6%95%B0%EF%BC%8Cx%5Cin%5Cmathscr%7BA%7D

%5Clim_%7Bn%5Cto%20%5Cinfty%7D%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%3C1%2C%E5%88%991%5Cin%20%5Crho(x)%2C%E4%B8%94(e-x)%5E%7B-1%7D%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20x%5En%2C

%E4%B8%94%20%5CVert%20x%5CVert%20%3C1%E6%97%B6%5CVert(e-x)%5E%7B-1%7D%5CVert%5Cleq%5Cfrac%7B1%7D%7B1-%5CVert%20x%5CVert%7D.

證明:

%E5%8F%96%20%5Cvarepsilon%3E0%E4%BD%BF%E5%BE%97r%2B%5Cvarepsilon%3C1.%E5%8F%96%E8%87%AA%E7%84%B6%E6%95%B0N%E4%BD%BF%E5%BE%97m%5Cgeq%20n%5Cgeq%20N%E6%9C%89

%5CVert%5Csum_%7Bk%3Dn%7D%5Em%20x%5Ek%5CVert%5Cleq%5Csum_%7Bk%3Dn%7D%5Em%20%5CVert%20x%5Ek%5CVert%5Cleq%5Csum_%7Bk%3Dn%7D%5Em%20(r%2B%5Cvarepsilon)%5Ek%5Cto0

%E8%AE%B0y_n%3D%5Csum_%7Bk%3D0%7D%5En%20x%5Ek%5C%20%2C%5Clim_%7Bn%5Cto%20%5Cinfty%7Dy_n%3D%5Csum_%7Bk%3D0%7D%5E%5Cinfty%20x%5Ek%3Dy

(x-%20e)y_n%3Dy_n(x-%20e)%3De-x%5E%7Bn%2B1%7D

%20%5CVert%20x%5En%5CVert%5Cleq%5C%20(r%2B%5Cvarepsilon)%5En%5Cto0

(x-%20e)y%3Dy(x-e)%3De

1%5Cin%20%5Crho(x)%2C%E4%B8%94(e-x)%5E%7B-1%7D%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20x%5En.

%E5%BD%93%20%5CVert%20x%5CVert%20%3C1%E6%97%B6%5CVert(e-x)%5E%7B-1%7D%5CVert%5Cleq%5Csum_%7Bk%3D0%7D%5E%5Cinfty%20%5CVert%20x%5Ek%5CVert%3D%5Cfrac%7B1%7D%7B1-%5CVert%20x%5CVert%7D

%5Cmathbb%7BQ.E.D.%7D

%5Cmathscr%7BT%7Deorem4%EF%BC%9A%E8%AE%BE%5Cmathscr%7BA%7D%E6%98%AF%E5%85%B7%E6%9C%89%E5%8D%95%E4%BD%8D%E5%85%83e%E7%9A%84Banach%E4%BB%A3%E6%95%B0%EF%BC%8Cx%5Cin%5Cmathscr%7BA%7D

%5Clim_%7Bn%5Cto%20%5Cinfty%7D%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%3Dr%2C%E5%88%99%5C%7B%5Clambda%20%EF%BC%9A%20%5Cvert%20%5Clambda%20%5Cvert%3Er%5C%7D%5Csubset%20%5Crho(x)

%E4%B8%94(%5Clambda%20e-%20x)%5E%7B-1%7D%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20%5Cfrac%7Bx%5En%7D%7B%5Clambda%5E%7Bn%2B1%7D%7D%2C

%5Cvert%20%5Clambda%5Cvert%20%3E%5CVert%20x%5CVert%E6%97%B6%EF%BC%8C

%5CVert(%5Clambda%20e-x)%5E%7B-1%7D%5CVert%5Cleq%5Cfrac%7B1%7D%7B%5Cvert%20%5Clambda%5Cvert-%5CVert%20x%5CVert%7D.

證明:

%E5%AF%B9%E4%BA%8E%20%5Clambda%5Cneq0%2C%5Clambda%20e-%20x%3D%5Clambda%20(e-%20%5Cfrac%7Bx%7D%7B%5Clambda%7D)

%5Clambda%20%20%5Cin%20%5Crho(x)%5CRightarrow%201%5Cin%5Crho(%5Cfrac%7Bx%7D%7B%5Clambda%7D)

%5Cmathbb%7BQ.E.D.%7D

%5Cmathscr%7BD%7Defination5%EF%BC%9A%E8%AE%BE%5Cmathscr%7BA%7D%E6%98%AF%E5%85%B7%E6%9C%89%E5%8D%95%E4%BD%8D%E5%85%83e%E7%9A%84Banach%E4%BB%A3%E6%95%B0

x%5Cin%20%5Cmathscr%7BA%7D%2C%E6%88%91%E4%BB%AC%E7%A7%B0r(x)%3D%5Cmax_%7B%5Clambda%5Cin%5Csigma(x)%7D%5Cvert%20%5Clambda%5Cvert%E4%B8%BAx%E7%9A%84%E8%B0%B1%E5%8D%8A%E5%BE%84.

%5Cmathscr%7BT%7Deorem6(Gelfand%E5%AE%9A%E7%90%86)%EF%BC%9A%E8%AE%BE%5Cmathscr%7BA%7D%E6%98%AF%E5%85%B7%E6%9C%89%E5%8D%95%E4%BD%8D%E5%85%83e%E7%9A%84Banach%E4%BB%A3%E6%95%B0

x%5Cin%20%5Cmathscr%7BA%7D%2C%E5%88%99%E8%B0%B1%E5%8D%8A%E5%BE%84r(x)%3D%5Clim_%7Bn%5Cto%20%5Cinfty%7D%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D.

證明:

%E5%8D%B3%E8%AF%81r(x)%5Cgeq%5Clim_%7Bn%5Cto%20%5Cinfty%7D%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%E5%8D%B3%E5%8F%AF

%5Cvert%20%5Clambda%20%5Cvert%3E%5Clim_%7Bn%5Cto%20%5Cinfty%7D%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%E6%97%B6%2C%E8%AE%B0a%3Dr(x)

(%5Clambda%20e-%20x)%5E%7B-1%7D%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20%5Cfrac%7Bx%5En%7D%7B%5Clambda%5E%7Bn%2B1%7D%7D%2C

%5Cforall%20f%5Cin%20%5Cmathscr%7BA%7D%5E*%E6%9C%89

f((%5Clambda%20e-%20x)%5E%7B-1%7D)%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20%5Cfrac%7Bf(x%5En)%7D%7B%5Clambda%5E%7Bn%2B1%7D%7D%2C

%E5%AE%B9%E6%98%93%E7%9F%A5%E9%81%93%5Cforall%20%20%5Cvarepsilon%3E0%EF%BC%8C

%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20%5Cfrac%7B%7Cf(x%5En)%7C%7D%7B(a%2B%5Cvarepsilon)%5E%7Bn%2B1%7D%7D%3C%2B%5Cinfty

%5Csup_n%20%5CBig%7Cf%5CBig(%5Cfrac%7Bx%5En%7D%7B(a%2B%5Cvarepsilon)%5E%7Bn%2B1%7D%7D%5CBig)%5CBig%7C%3C%2B%5Cinfty

由共鳴定理得

M%3D%5Csup_n%20%5CBig%5CVert%5Cfrac%7Bx%5En%7D%7B(a%2B%5Cvarepsilon)%5E%7Bn%2B1%7D%7D%5CBig%5CVert%3C%2B%5Cinfty

%5CVert%20x%5En%5CVert%3CM(a%2B%5Cvarepsilon)%5En

%5Clim_%7Bn%5Cto%20%5Cinfty%7D%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%5Cleq%20a%2B%5Cvarepsilon

%E6%98%BE%E7%84%B6r(x)%5Cgeq%5Clim_%7Bn%5Cto%20%5Cinfty%7D%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D

%E6%89%80%E4%BB%A5%E8%B0%B1%E5%8D%8A%E5%BE%84r(x)%3D%5Cmax_%7B%5Clambda%5Cin%5Csigma(x)%7D%5Cvert%20%5Clambda%5Cvert%3D%5Clim_%7Bn%5Cto%20%5Cinfty%7D%5CVert%20x%5En%5CVert%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D.

%5Cmathbb%7BQ.E.D.%7D


Banach代數中元素的譜的評論 (共 條)

分享到微博請遵守國家法律
莱西市| 昂仁县| 灌阳县| 高邮市| 黄大仙区| 海安县| 蒙阴县| 栖霞市| 尼勒克县| 武鸣县| 金溪县| 舞阳县| 扎鲁特旗| 阳泉市| 河津市| 乡宁县| 昔阳县| 民和| 全州县| 白河县| 建阳市| 兴化市| 应城市| 伊通| 琼结县| 额济纳旗| 育儿| 类乌齐县| 溧阳市| 江西省| 高平市| 墨脱县| 乡城县| 密云县| 五原县| 保定市| 岑溪市| 宁化县| 贡山| 琼中| 宜黄县|