最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

關于極點極線的一對基礎命題

2022-10-19 16:46 作者:數(shù)學老頑童  | 我要投稿
  • 已知橢圓%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D%2B%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%3D1a%3Eb%3E0)及其所在平面內(nèi)一點P%5Cleft(%20x_0%2Cy_0%20%5Cright)%20(不在橢圓上,也不在橢圓中心),過P的直線l_1與橢圓交于A、B兩點,與直線l_2%5Cfrac%7Bx_0x%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0y%7D%7Bb%5E2%7D%3D1交于點Q,證明:%5Cfrac%7B1%7D%7B%5Cleft%7C%20PA%20%5Cright%7C%7D%2B%5Cfrac%7B1%7D%7B%5Cleft%7C%20PB%20%5Cright%7C%7D%3D%5Cfrac%7B2%7D%7B%5Cleft%7C%20PQ%20%5Cright%7C%7D.

l_1的參數(shù)方程為%5Cbegin%7Bcases%7D%09x%3Dx_0%2Bt%5Ccos%20%20%5Calpha%20%2C%5C%5C%09y%3Dy_0%2Bt%5Csin%20%20%5Calpha%20%2C%5C%5C%5Cend%7Bcases%7D

t為參數(shù)),

與橢圓聯(lián)立得

%5Cleft(%20%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%5E2%2B%5Cleft(%20%5Cfrac%7B2x_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B2y_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%2B%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%3D0

各項同除以t%5E2,得

%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%20%5Cright)%20%5Cleft(%20%5Cfrac%7B1%7D%7Bt%7D%20%5Cright)%20%5E2%2B%5Cleft(%20%5Cfrac%7B2x_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B2y_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20%5Cfrac%7B1%7D%7Bt%7D%2B%5Cleft(%20%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%3D0

依韋達定理可得

%5Cfrac%7B1%7D%7Bt_1%7D%2B%5Cfrac%7B1%7D%7Bt_2%7D%3D%5Cfrac%7B2%5Cleft(%20%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%7D%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%5Cright)%7D.

聯(lián)立l_1l_2,解得

%5Cfrac%7B1%7D%7Bt_0%7D%3D%5Cfrac%7B%5Cfrac%7Bx_0%5Ccos%20%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%20%5Calpha%7D%7Bb%5E2%7D%7D%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D.

所以

%5Cfrac%7B1%7D%7B%5Cleft%7C%20PA%20%5Cright%7C%7D%2B%5Cfrac%7B1%7D%7B%5Cleft%7C%20PB%20%5Cright%7C%7D%3D%5Cfrac%7B1%7D%7Bt_1%7D%2B%5Cfrac%7B1%7D%7Bt_2%7D%3D%5Cfrac%7B2%7D%7Bt_0%7D%3D%5Cfrac%7B2%7D%7B%5Cleft%7C%20PQ%20%5Cright%7C%7D

  • 已知橢圓%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D%2B%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%3D1a%3Eb%3E0)及其所在平面內(nèi)一點P%5Cleft(%20x_0%2Cy_0%20%5Cright)%20(不在橢圓上,也不在橢圓中心),過P的直線l與橢圓交于A、B兩點,點Q滿足:%5Cfrac%7B1%7D%7B%5Cleft%7C%20PA%20%5Cright%7C%7D%2B%5Cfrac%7B1%7D%7B%5Cleft%7C%20PB%20%5Cright%7C%7D%3D%5Cfrac%7B2%7D%7B%5Cleft%7C%20PQ%20%5Cright%7C%7D,求Q的軌跡方程.

l的參數(shù)方程為%5Cbegin%7Bcases%7D%09x%3Dx_0%2Bt%5Ccos%20%20%5Calpha%20%2C%5C%5C%09y%3Dy_0%2Bt%5Csin%20%20%5Calpha%20%2C%5C%5C%5Cend%7Bcases%7D

t為參數(shù)),

與橢圓聯(lián)立得

%5Cleft(%20%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%5E2%2B%5Cleft(%20%5Cfrac%7B2x_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B2y_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%2B%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%3D0

各項同除以t%5E2,得

%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%20%5Cright)%20%5Cleft(%20%5Cfrac%7B1%7D%7Bt%7D%20%5Cright)%20%5E2%2B%5Cleft(%20%5Cfrac%7B2x_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B2y_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20%5Cfrac%7B1%7D%7Bt%7D%2B%5Cleft(%20%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%3D0

依韋達定理可得

%5Cfrac%7B1%7D%7Bt_1%7D%2B%5Cfrac%7B1%7D%7Bt_2%7D%3D%5Cfrac%7B2%5Cleft(%20%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%7D%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D.

所以

%5Cbegin%7Baligned%7D%0A%09%5Cfrac%7B2%7D%7Bt_Q%7D%26%3D%5Cfrac%7B2%7D%7B%5Cleft%7C%20PQ%20%5Cright%7C%7D%3D%5Cfrac%7B1%7D%7B%5Cleft%7C%20PA%20%5Cright%7C%7D%2B%5Cfrac%7B1%7D%7B%5Cleft%7C%20PB%20%5Cright%7C%7D%3D%5Cfrac%7B1%7D%7Bt_1%7D%2B%5Cfrac%7B1%7D%7Bt_2%7D%5C%5C%0A%09%26%3D%5Cfrac%7B2%5Cleft(%20%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%7D%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D%5C%5C%0A%5Cend%7Baligned%7D

所以

t_Q%3D%5Cfrac%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D%7B%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%7D.

所以

%5Cbegin%7Bcases%7D%09x_Q%3Dx_0%2B%5Cfrac%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D%7B%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%7D%5Ccdot%20%5Ccos%20%20%5Calpha%20%2C%5C%5C%09y_Q%3Dy_0%2B%5Cfrac%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D%7B%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%7D%5Ccdot%20%5Csin%20%20%5Calpha%20%2C%5C%5C%5Cend%7Bcases%7D

消去%5Calpha可得:%5Cfrac%7Bx_0x_Q%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0y_Q%7D%7Bb%5E2%7D%3D1.

所以點Q的軌跡方程為直線:

%5Cfrac%7Bx_0x%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0y%7D%7Bb%5E2%7D%3D1.

關于極點極線的一對基礎命題的評論 (共 條)

分享到微博請遵守國家法律
将乐县| 阜城县| 湟中县| 南安市| 常山县| 曲阳县| 武定县| 大新县| 九龙坡区| 合山市| 石门县| 闽清县| 滦平县| 金堂县| 如皋市| 双城市| 灵台县| 莒南县| 福海县| 马龙县| 东宁县| 安泽县| 松桃| 珲春市| 镇雄县| 亚东县| 绥中县| 临武县| 鄄城县| 曲靖市| 阿拉善左旗| 来凤县| 民勤县| 昌平区| 东辽县| 南陵县| 西乌珠穆沁旗| 新晃| 淮滨县| 平安县| 永兴县|