最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊

復(fù)習(xí)筆記Day108

2023-02-26 20:53 作者:間宮_卓司  | 我要投稿

這幾天在看應(yīng)堅(jiān)鋼的概率論,一開始選這本書的原因倒不是因?yàn)槲抑肋@本書的觀點(diǎn)比較高(相較于我看過的其他概率論課本來說),不過看看倒也無所謂···因?yàn)楦怕收摲旁趶?fù)試的面試部分,所以我不怎么打算做題,主要是基礎(chǔ)知識(shí)要梳理清楚。過幾天如果我能讀的下去的話,我會(huì)在讀完這本書后把這本書的大體框架寫成筆記發(fā)上來,不過應(yīng)該會(huì)跳著讀了,一些完全不可能問到的地方就跳過了。

雖然說不怎么做題,但是因?yàn)樵诹?xí)題里面看到了之前做過的數(shù)分題,所以還是打算試一下

108.1 利用%5Ctext%7BBernoulli%7D的大數(shù)定律證明%5Ctext%7BWeierstrass%7D定理:設(shè)f%5B0%2C1%5D上的連續(xù)函數(shù),定義%5Ctext%7BBernstein%7D多項(xiàng)式

f_n%5Cleft(%20x%20%5Cright)%20%3D%5Csum_%7Bk%3D0%7D%5En%7B%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09n%5C%5C%0A%09k%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%20f%5Cleft(%20%5Cfrac%7Bk%7D%7Bn%7D%20%5Cright)%7Dx%5Ek%5Cleft(%201-x%20%5Cright)%20%5E%7Bn-k%7D%2Cx%5Cin%20%5Cleft%5B%200%2C1%20%5Cright%5D%20

f_n%5B0%2C1%5D上一致收斂于f

首先回顧一下%5Ctext%7BBernoulli%7D的大數(shù)定律

懶得自己打了


此外還可以知道,%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20_n%3Dk%20%5Cright)%20%3D%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09n%5C%5C%0A%09k%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%20p%5Ek%5Cleft(%201-p%20%5Cright)%20%5E%7Bn-k%7D,為了湊出%5Ctext%7BBernstein%7D多項(xiàng)式的形式,先試試看把p換成x。這個(gè)時(shí)候,%5Ctext%7BBernstein%7D多項(xiàng)式就變成了

f_n%5Cleft(%20x%20%5Cright)%20%3D%5Csum_%7Bk%3D0%7D%5En%7B%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09n%5C%5C%0A%09k%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%20%5Cfrac%7Bk%7D%7Bn%7D%7Dx%5Ek%5Cleft(%201-x%20%5Cright)%20%5E%7Bn-k%7D%2Cx%5Cin%20%5Cleft%5B%200%2C1%20%5Cright%5D%20

這就是%5Cfrac%7B%5Cmathbb%7BE%7D%20%5Cxi%20_n%7D%7Bn%7D,那么現(xiàn)在來估計(jì)一下%5Cleft%7C%20%5Cfrac%7B%5Cmathbb%7BE%7D%20%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C

%5Cbegin%7Baligned%7D%0A%09%26%5Cleft%7C%20%5Cfrac%7B%5Cmathbb%7BE%7D%20%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%5Cle%20%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%20%5Cright)%5C%5C%0A%09%26%3D%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3B%5Cleft%5C%7B%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%5Cle%20%5Cvarepsilon%20%5Cright%5C%7D%20%5Cright)%20%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%5Cle%20%5Cvarepsilon%20%5Cright)%20%0A%5C%5C%26%2B%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3B%5Cleft%5C%7B%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3E%5Cvarepsilon%20%5Cright%5C%7D%20%5Cright)%20%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3E%5Cvarepsilon%20%5Cright)%5C%5C%0A%09%26%5Cle%20%5Cvarepsilon%20%2B%5Cfrac%7BM%7D%7B4%5Cvarepsilon%20%5E2n%7D%5C%5C%0A%5Cend%7Baligned%7D

這里的%5Cmathbb%7BE%7D(X%3BA)代表把樣本空間限制在A上對(duì)隨機(jī)變量X去求期望

其中的M%3D%5Cmax%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%20%5Cright)%20,分母的估計(jì)來源于%5Ctext%7BBernoulli%7D大數(shù)定律的證明,從上面的估計(jì)可以看出,對(duì)于與x無關(guān)的充分大的n,會(huì)成立%5Cleft%7C%20%5Cfrac%7B%5Cmathbb%7BE%7D%20%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%5Cle%202%5Cvarepsilon%20,也就是%5Cleft%7C%20f_n%5Cleft(%20x%20%5Cright)%20-x%20%5Cright%7C%3C2%5Cvarepsilon%20

對(duì)于一般的情況來說,從上面的證明可以看出來,實(shí)際上就是要估計(jì)

%5Cleft%7C%20%5Cmathbb%7BE%7D%20%5Cleft(%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C

為了估計(jì)這個(gè)數(shù),試著把它往上面的式子的形式上湊。因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=f(x)" alt="f(x)">在%5B0%2C1%5D上連續(xù),所以它在%5B0%2C1%5D上一致連續(xù),也就是說%5Cforall%20%5Cvarepsilon%20%3E0%5Cexists%20%5Cdelta%20%3E0,%5Cforall%20%5Cleft%20%7Cx-y%20%5Cright%7C%3C%5Cdeltax%2Cy%5Cin%5B0%2C1%5D,都成立%5Cleft%7C%20f%5Cleft(%20x%20%5Cright)%20-f%5Cleft(%20y%20%5Cright)%20%5Cright%7C%3C%5Cvarepsilon%20,那么

%5Cbegin%7Baligned%7D%0A%09%26%5Cleft%7C%20%5Cmathbb%7BE%7D%20%5Cleft(%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%3D%5Cleft%7C%20%5Cmathbb%7BE%7D%20%5Cleft(%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright)%20%5Cright%7C%5C%5C%0A%09%26%5Cle%20%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%20%5Cright)%5C%5C%0A%09%26%3D%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%3B%5Cleft%5C%7B%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%5Cle%20%5Cvarepsilon%20%5Cright%5C%7D%20%5Cright)%20%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%5Cle%20%5Cvarepsilon%20%5Cright)%5C%5C%0A%09%26%2B%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%3B%5Cleft%5C%7B%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%3E%5Cvarepsilon%20%5Cright%5C%7D%20%5Cright)%20%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%3E%5Cvarepsilon%20%5Cright)%5C%5C%0A%09%26%5Cle%20%5Cvarepsilon%20%2B%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3B%5Cleft%5C%7B%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3E%5Cdelta%20%5Cright%5C%7D%20%5Cright)%20%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3E%5Cdelta%20%5Cright)%5C%5C%0A%09%26%5Cle%20%5Cvarepsilon%20%2B%5Cfrac%7BM%7D%7B4%5Cdelta%20%5E2n%7D%5C%5C%0A%5Cend%7Baligned%7D

然后和上面一樣可以導(dǎo)出結(jié)論,其中第二個(gè)不等號(hào)是因?yàn)?/p>

%5Cleft%5C%7B%20%5Cleft%7C%20f%5Cleft(%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D%20%5Cright)%20-f%5Cleft(%20x%20%5Cright)%20%5Cright%7C%3E%5Cvarepsilon%20%5Cright%5C%7D%20%5Csubset%20%5Cleft(%20%5Cleft%7C%20%5Cfrac%7B%5Cxi%20_n%7D%7Bn%7D-x%20%5Cright%7C%3E%5Cdelta%20%5Cright)%20

這個(gè)問題的數(shù)分證法見陳紀(jì)修,比這個(gè)復(fù)雜很多

108.2 設(shè)隨機(jī)變量%5Cxi是標(biāo)準(zhǔn)化的,證明:

對(duì)x%3E0,%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%5Cge%20x%20%5Cright)%20%5Cle%20%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D。

此不等式不能再改進(jìn),即存在標(biāo)準(zhǔn)化的隨機(jī)變量%5Cxi,使得%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%5Cge%20x%20%5Cright)%20%3D%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D

(提示:先利用%5Ctext%7BChebyshev%7D的方法找到適當(dāng)?shù)暮瘮?shù)證明%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%3Ex%20%5Cright)%20%3D%5Cfrac%7B1%2Ba%5E2%7D%7B%5Cleft(%20x%2Ba%20%5Cright)%20%5E2%7D,然后取適當(dāng)?shù)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=a" alt="a">)

按照提示探索了一段時(shí)間后,可知

%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%3Ex%20%5Cright)%20%3D%5Cmathbb%7BE%7D%20%5Cleft(%201%3B%5Cleft%5C%7B%20%5Cxi%20%3Ex%20%5Cright%5C%7D%20%5Cright)%20%5Cle%20%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft(%20%5Cfrac%7B%5Cxi%20%2Ba%7D%7Bx%2Ba%7D%20%5Cright)%20%5E2%3B%5Cleft%5C%7B%20%5Cxi%20%3Ex%20%5Cright%5C%7D%20%5Cright)%20%5Cle%20%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft(%20%5Cfrac%7B%5Cxi%20%2Ba%7D%7Bx%2Ba%7D%20%5Cright)%20%5E2%20%5Cright)%20

計(jì)算可知%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft(%20%5Cfrac%7B%5Cxi%20%2Ba%7D%7Bx%2Ba%7D%20%5Cright)%20%5E2%20%5Cright)%20%3D%5Cfrac%7B1%2Ba%5E2%7D%7B%5Cleft(%20x%2Ba%20%5Cright)%20%5E2%7D(這里之前一直把標(biāo)準(zhǔn)化的隨機(jī)變量的期望當(dāng)成1了,結(jié)果半天出不來這個(gè)結(jié)果)

接下來,因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20a%7D%5Cln%20%5Cleft(%20%5Cfrac%7B1%2Ba%5E2%7D%7B%5Cleft(%20x%2Ba%20%5Cright)%20%5E2%7D%20%5Cright)%20%3D%5Cfrac%7B2a%7D%7B1%2Ba%5E2%7D-%5Cfrac%7B2%7D%7Bx%2Ba%7D" alt="%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20a%7D%5Cln%20%5Cleft(%20%5Cfrac%7B1%2Ba%5E2%7D%7B%5Cleft(%20x%2Ba%20%5Cright)%20%5E2%7D%20%5Cright)%20%3D%5Cfrac%7B2a%7D%7B1%2Ba%5E2%7D-%5Cfrac%7B2%7D%7Bx%2Ba%7D">,易知xa%3D1時(shí)這個(gè)關(guān)于a的函數(shù)有最小值,帶入可得

%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%5Cge%20x%20%5Cright)%20%5Cle%20%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D

而如果一個(gè)隨機(jī)變量以F%5Cleft(%20x%20%5Cright)%20%3D1-%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D為它的分布函數(shù)的話,它的期望是0且方差是1,這就證明了結(jié)論(大概吧,懶得算了)

這題的數(shù)分解法見78.3



復(fù)習(xí)筆記Day108的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
高邑县| 宁武县| 吴川市| 旬阳县| 盐城市| 高台县| 阳城县| 蓝田县| 沁阳市| 海南省| 台前县| 平谷区| 开化县| 洮南市| 景洪市| 新营市| 富锦市| 县级市| 都安| 金山区| 北票市| 丹棱县| 台东县| 光泽县| 丘北县| 定陶县| 始兴县| 黑山县| 旅游| 马关县| 常德市| 白玉县| 昔阳县| 江达县| 义马市| 尉犁县| 讷河市| 宜昌市| 北辰区| 南阳市| 吉林省|