【標(biāo)題速讀】【Nano_letter】【2022年】【3月】

聲明:本專欄主要對生命科學(xué)領(lǐng)域的一些期刊文章標(biāo)題進行翻譯,所有內(nèi)容均由本人手工整理翻譯。由于本人專業(yè)為生物分析相關(guān),其他領(lǐng)域如果出現(xiàn)翻譯錯誤請諒解。

硅取代香豆素被設(shè)計為一種新型熒光團家族,通過組裝和拆卸其納米聚集體來調(diào)節(jié)熒光,用于體內(nèi)蛋白質(zhì)識別。?Si-香豆素中氫鍵增強的納米聚集和抗溶劑化顯色確保了對靶向蛋白質(zhì)的顯著靈敏度和選擇性。

Abundant topological phonons are found in silicon. The mysterious surface phonon modes of Si experimentally discovered half a century ago may be of topological origin.
在硅中發(fā)現(xiàn)了大量的拓?fù)渎曌印?半個世紀(jì)前通過實驗發(fā)現(xiàn)的硅的神秘表面聲子模式可能具有拓?fù)淦鹪础?/p>
A fabrication approach for a curved circular nanofluidic channel remains a large blank. Here, 2D patterns can be quickly transformed into 3D curved circular nanotubes by electron-beam-induced self-curving. This technique offers a very flexible and controllable approach in patterning the circular nanofluidic channel and in adjusting the diameter and curvature of the nanotube.
彎曲圓形納米流體通道的制造方法仍然是一個很大的空白。?在這里,2D 圖案可以通過電子束誘導(dǎo)的自彎曲快速轉(zhuǎn)化為 3D 彎曲的圓形納米管。?該技術(shù)提供了一種非常靈活且可控的方法來圖案化圓形納米流體通道以及調(diào)整納米管的直徑和曲率。

CNT-based nucleotide sensors were fabricated with individual CNTs with a length of ~15 μm and diameters ranging from 1.5 to 2.5 nm. The transport phenomena of single nucleotides were diameter-dependent, and all four types of the nucleotides can be identified statistically according to their current pulses.
基于 CNT 的核苷酸傳感器由長度約為 15 μm、直徑范圍為 1.5 至 2.5 nm 的單個 CNT 制成。?單個核苷酸的轉(zhuǎn)運現(xiàn)象是直徑依賴性的,所有四種類型的核苷酸都可以根據(jù)它們的電流脈沖進行統(tǒng)計識別。

By illuminating subwavelength arrays of square Au nanoparticles, we excite resonant current loops between the Au inclusions. These magnetic resonances interfere destructively with the localized plasmons of the system, resulting in absorption peaks that offer opportunities for tuning the optoelectronic properties of thermalized emitters placed in their vicinity.
通過照射方形金納米顆粒的亞波長陣列,我們激發(fā)了金內(nèi)含物之間的諧振電流回路。?這些磁共振會破壞性地干擾系統(tǒng)的局域等離子體激元,從而產(chǎn)生吸收峰,從而為調(diào)整位于其附近的熱化發(fā)射器的光電特性提供了機會。

A high-speed lithography head surfs on a precursor liquid at a speed of 10 m/s. Its trailing edge carries a nanoscale scanning probe that emits electrons to direct-write nanoscale patterns onto a silicon wafer substrate.
高速光刻頭以 10 m/s 的速度在前驅(qū)體液體上沖浪。?它的后緣帶有一個納米級掃描探針,可發(fā)射電子將納米級圖案直接寫入硅晶圓基板上。

The regulation of pore sizes for the microstructure of porous Cu shells enhanced the local confinement of reaction intermediates, facilitating C?C coupling and, thus, improving the selectivity for C2+ products over core-shell Ag@Cu catalysts towards CO2 electroreduction.
多孔銅殼微觀結(jié)構(gòu)孔徑的調(diào)節(jié)增強了反應(yīng)中間體的局部限制,促進了C-C耦合,從而提高了C2+產(chǎn)物相對于核殼Ag@Cu催化劑對CO2電還原的選擇性。

In two-dimensional transition metal dichalcogenides, electrons and holes bind together to form excitons. However, when packed closely, these bound states can be forced to split up. Using a new technique, we resolve how this Mott transition plays out in a twisted bilayer of WSe2 over femtosecond time- and nanometer length scales.
在二維過渡金屬二硫?qū)倩镏校娮雍涂昭ńY(jié)合在一起形成激子。?然而,當(dāng)緊密堆積時,這些束縛態(tài)可能被迫分裂。?使用新技術(shù),我們解決了這種莫特躍遷如何在飛秒時間和納米長度尺度上的 WSe2 扭曲雙層中發(fā)揮作用。

Collecting four-dimensional datasets provides information on local orientation over several length scales important to the realization of macroscopic functionality from nanoscale design. In this cover, a new method is depicted in which statistically relevant information on grain size, orientation, and lattice parameters can all be analyzed without physical or chemical alteration of the sample. Electron scattering from the pristine surface of a continuous monolayer tungsten diselenide film is depicted.
收集四維數(shù)據(jù)集提供了多個長度尺度上的局部方向信息,這對于通過納米級設(shè)計實現(xiàn)宏觀功能非常重要。?在本封面中,描述了一種新方法,其中可以分析有關(guān)晶粒尺寸、取向和晶格參數(shù)的統(tǒng)計相關(guān)信息,而無需對樣品進行物理或化學(xué)改變。?描繪了連續(xù)單層二硒化鎢薄膜原始表面的電子散射。

We demonstrate the significant effect of edge-topological regulation on the in-situ fabrication of ZnO bridging nanosensors. The stochastic nature of bridging growth direction at the sharp edges inherently causes such unintentional variations in the structural and electrical properties. ?Newly proposed edge-regulated bridging nanosensors not only substantially improve the uniformity of the structural and electrical properties between two opposing electrodes, but also significantly enhances the sensing responses
我們證明了邊緣拓?fù)湔{(diào)控對 ZnO 橋接納米傳感器原位制造的顯著影響。?鋒利邊緣處橋接生長方向的隨機性質(zhì)本質(zhì)上導(dǎo)致了結(jié)構(gòu)和電性能的這種無意的變化。?新提出的邊緣調(diào)節(jié)橋接納米傳感器不僅大大提高了兩個相對電極之間結(jié)構(gòu)和電性能的均勻性,而且顯著增強了傳感響應(yīng)
1.Electrically Switchable Intervalley Excitons with Strong Two-Phonon Scattering in Bilayer WSe2.
雙層 WSe2 中具有強雙聲子散射的電可切換谷間激子。

2.Nanoprogrammed Cross-Kingdom Communication Between Living Microorganisms.
活微生物之間的納米程序跨界通訊。

3.Confinement-Engineered Superconductor to Correlated-Insulator Transition in a van der Waals Monolayer.
范德華單層中限制工程超導(dǎo)體到相關(guān)絕緣體的轉(zhuǎn)變。

4.Biocompatible Nanotomography of Tightly Focused Light.
緊密聚焦光的生物相容性納米斷層掃描。

5.Nuclear Quantum Effects on the Charge-Density Wave Transition in NbX2 (X = S, Se).
NbX2 (X = S, Se) 中電荷密度波躍遷的核量子效應(yīng)。

6.Real-Time Sensing with Multiplexed Optomechanical Resonators.
使用多路復(fù)用光機械諧振器進行實時傳感。

7.Ultrafast GHz-Range Swept-Tuned Spectrum Analyzer with 20 ns Temporal Resolution Based on a Spin-Torque Nano-Oscillator with a Uniformly Magnetized “Free” Layer.
超快 GHz 范圍掃描調(diào)諧頻譜分析儀,具有 20 ns 時間分辨率,基于具有均勻磁化“自由”層的自旋扭矩納米振蕩器。

8.Nanoengineered Bifidobacterium bifidum with Optical Activity for Photothermal Cancer Immunotheranostics.
具有光學(xué)活性的納米工程雙歧桿菌,用于光熱癌癥免疫治療。

9.Fluctuation of Interfacial Electronic Properties Induces Friction Tuning under an Electric Field.
界面電子特性的波動引起電場下的摩擦調(diào)諧。

10.Simultaneous High-Strength and Deformable Nanolaminates With Thick Biphase Interfaces.
具有厚雙相界面的同時高強度和可變形納米層壓材料。

11.Expanding the Molecular Alphabet of DNA-Based Data Storage Systems with Neural Network Nanopore Readout Processing.
利用神經(jīng)網(wǎng)絡(luò)納米孔讀出處理擴展基于 DNA 的數(shù)據(jù)存儲系統(tǒng)的分子字母表。

12.Plasmonic Nanocavity Induced Coupling and Boost of Dark Excitons in Monolayer WSe2 at Room Temperature.
室溫下單層 WSe2 中等離子體納米腔誘導(dǎo)耦合和暗激子增強。

13.Hydrogen Atoms on Zigzag Graphene Nanoribbons: Chemistry and Magnetism Meet at the Edge.
鋸齒形石墨烯納米帶上的氫原子:化學(xué)和磁學(xué)在邊緣相遇。

14.Observation and Manipulation of a Phase Separated State in a Charge Density Wave Material.
電荷密度波材料中相分離狀態(tài)的觀察和操縱。

15.In Vivo Activation of T-Cell Proliferation by Regulating Cell Surface Receptor Clustering Using a pH-Driven Interlocked DNA Nano-Spring.
使用 pH 驅(qū)動的互鎖 DNA 納米彈簧調(diào)節(jié)細(xì)胞表面受體簇來激活 T 細(xì)胞增殖。

16.Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl3 Heterostructures.
石墨烯/α-RuCl3 異質(zhì)結(jié)構(gòu)中的納米級橫向 p-n 結(jié)。

17.Hydrogen Bond-Enhanced Nanoaggregation and Antisolvatochromic Fluorescence for Protein-Recognition by Si-Coumarins.
用于硅香豆素蛋白質(zhì)識別的氫鍵增強納米聚集和抗溶劑化顯色熒光。

18.Vertical Cu Nanoneedle Arrays Enhance the Local Electric Field Promoting C2 Hydrocarbons in the CO2 Electroreduction.
垂直銅納米針陣列增強局部電場,促進CO2 電還原中的 C2 碳?xì)浠衔铩?/p>
19.Three-Dimensional Vortex Gyration Dynamics Unraveled by Time-Resolved Soft X-ray Laminography with Freely Selectable Excitation Frequencies.
通過可自由選擇激發(fā)頻率的時間分辨軟 X 射線層析成像揭示三維渦旋動力學(xué)。

20.Visualization of the Final Stage of Sintering in Nanoceramics with Atomic Resolution.
具有原子分辨率的納米陶瓷燒結(jié)最后階段的可視化。

21.Real-Time Observation and Analysis of Magnetomechanical Actuation of Magnetic Nanoparticles in Cells.
細(xì)胞內(nèi)磁性納米顆粒磁機械驅(qū)動的實時觀察和分析。

22.Sub-5 nm Anisotropic Pattern Transfer via Colloidal Lithography of a Self-Assembled GdF3 Nanocrystal Monolayer.
通過自組裝 GdF3 納米晶體單層膠體光刻實現(xiàn)亞 5 nm 各向異性圖案轉(zhuǎn)移。

23.Optical Bound States in the Continuum Enabled by Magnetic Resonances Coupled to a Mirror.
通過耦合到鏡子的磁共振實現(xiàn)連續(xù)體中的光學(xué)束縛態(tài)。

24.Nanoscale-Femtosecond Imaging of Evanescent Surface Plasmons on Silver Film by Photon-Induced Near-Field Electron Microscopy.
通過光子誘導(dǎo)近場電子顯微鏡對銀膜上的倏逝表面等離子體激元進行納米級飛秒成像。

25.Ultrafast and Low-Threshold THz Mode Switching of Two-Dimensional Nonlinear Metamaterials.
二維非線性超材料的超快和低閾值太赫茲模式切換。

26.Femtosecond Dynamics of a Polariton Bosonic Cascade at Room Temperature.
室溫下極化子玻色子級聯(lián)的飛秒動力學(xué)。

27.An Ultrathin Functional Layer Based on Porous Organic Cages for Selective Ion Sieving and Lithium–Sulfur Batteries.
基于多孔有機籠的超薄功能層,用于選擇性離子篩分和鋰硫電池。

28.Therapeutic Hydrogel Patch to Treat Atopic Dermatitis by Regulating Oxidative Stress.
通過調(diào)節(jié)氧化應(yīng)激治療特應(yīng)性皮炎的治療性水凝膠貼劑。

29.Neoantigen Immunotherapeutic-Gel Combined with TIM-3 Blockade Effectively Restrains Orthotopic Hepatocellular Carcinoma Progression.
新抗原免疫治療凝膠聯(lián)合 TIM-3 阻斷可有效抑制原位肝細(xì)胞癌進展。

30.Free-Space Optical Merging via Meta-Grating Inverse-Design.
通過元光柵逆設(shè)計的自由空間光學(xué)合并。

31.Electron Dynamics in Hybrid Perovskites Reveal the Role of Organic Cations on the Screening of Local Charges.
雜化鈣鈦礦中的電子動力學(xué)揭示了有機陽離子在局部電荷篩選中的作用。

32.3D Hypersound Microscopy of van der Waals Heterostructures.
范德華異質(zhì)結(jié)構(gòu)的 3D 超聲顯微鏡。

33.Ultrasmall-Scale Brittle Fracture Initiated from a Dislocation in SrTiO3.
SrTiO3 中位錯引發(fā)的超小尺度脆性斷裂。

34.Direct Observation of Large-Scale Screw Dislocation Grids in Oxide Heteroepitaxies.
氧化物異質(zhì)外延中大規(guī)模螺旋位錯網(wǎng)格的直接觀察。

35.Inverse-Designed Aid Lenses for Precise Correction of Color Vision Deficiency.
逆向設(shè)計的輔助鏡片可精確矯正色覺缺陷。

36.Nanoparticle Surface Engineering with Heparosan Polysaccharide Reduces Serum Protein Adsorption and Enhances Cellular Uptake.
使用 Heparosan 多糖的納米顆粒表面工程可減少血清蛋白吸附并增強細(xì)胞攝取。

37.Photoluminescence Lightening: Extraordinary Oxygen Modulated Dynamics in WS2 Monolayers.
光致發(fā)光:WS2 單層膜中非凡的氧調(diào)制動力學(xué)。

38.Ubiquitous Topological States of Phonons in Solids: Silicon as a Model Material.
固體中普遍存在的聲子拓?fù)鋺B(tài):硅作為模型材料。

39.Distinguishing Thermal from Nonthermal (“Hot”) Carriers in Illuminated Molecular Junctions.
區(qū)分發(fā)光分子結(jié)中的熱載流子和非熱載流子。

40.Coherent Spin Preparation of Indium Donor Qubits in Single ZnO Nanowires.
單 ZnO 納米線中銦供體量子位的相干自旋制備。

41.Realization of Curved Circular Nanotubes Using In Situ Monitored Self-Assembly.
利用原位監(jiān)測自組裝實現(xiàn)彎曲圓形納米管。

42.Comparison Study on Single Nucleotide Transport Phenomena in Carbon Nanotubes.
碳納米管中單核苷酸傳輸現(xiàn)象的比較研究。

43.Anomalous Absorption in Arrays of Metallic Nanoparticles: A Powerful Tool for Quantum Dot Optoelectronics.
金屬納米粒子陣列中的反常吸收:量子點光電學(xué)的強大工具。

44.Correction to Ultrasensitive Detection of Exosome Using Biofunctionalized Gold Nanorods on a Silver-Island Film.
校正:使用銀島膜上的生物功能化金納米棒對外泌體的超靈敏檢測。

45.Subnanometer Topological Tuning of the Liquid Intrusion/Extrusion Characteristics of Hydrophobic Micropores.
疏水微孔液體侵入/擠出特性的亞納米拓?fù)湔{(diào)諧。

46.Charge Transfer-Mediated Dramatic Enhancement of Raman Scattering upon Molecular Point Contact Formation.
分子點接觸形成時電荷轉(zhuǎn)移介導(dǎo)的拉曼散射的顯著增強。

47.Strong Light–Matter Interactions between Gap Plasmons and Two-Dimensional Excitons under Ambient Conditions in a Deterministic Way.
環(huán)境條件下間隙等離子體和二維激子之間確定性的強光-物質(zhì)相互作用。

48.Surfing Scanning Probe Nanolithography at Meters Per Second.
每秒米數(shù)的沖浪掃描探針納米光刻。

49.Wide-Field Super-Resolution Optical Fluctuation Imaging through Dynamic Near-Field Speckle Illumination.
通過動態(tài)近場散斑照明進行寬視場超分辨率光學(xué)波動成像。

50.Toward Optimized Charge Transport in Multilayer Reduced Graphene Oxides.
多層還原氧化石墨烯中優(yōu)化電荷傳輸。

51.Superconducting Triplet Rim Currents in a Spin-Textured Ferromagnetic Disk.
自旋織構(gòu)鐵磁盤中的超導(dǎo)三重態(tài)邊緣電流。

52.Apoptotic Body-Mediated Intracellular Delivery Strategy for Enhanced STING Activation and Improved Tumor Immunogenicity.
凋亡體介導(dǎo)的細(xì)胞內(nèi)遞送策略增強 STING 激活和改善腫瘤免疫原性。

53.Investigation of Ca Insertion into α-MoO3 Nanoparticles for High Capacity Ca-Ion Cathodes.
用于高容量鈣離子陰極的 α-MoO3 納米顆粒中 Ca 插入的研究。

54.Crystallographic Effects of GaN Nanostructures in Photoelectrochemical Reaction.
光電化學(xué)反應(yīng)中 GaN 納米結(jié)構(gòu)的晶體學(xué)效應(yīng)。

55.Near-Field Modulation of Differently Oriented Single Photon Emitters with A Plasmonic Probe.
使用等離激元探針對不同方向的單光子發(fā)射器進行近場調(diào)制。

56.In situ Thermal-Responsive Magnetic Hydrogel for Multidisciplinary Therapy of Hepatocellular Carcinoma.
原位熱響應(yīng)磁水凝膠用于肝細(xì)胞癌的多學(xué)科治療。

57.Reversible Mechanochromisms via Manipulating Surface Wrinkling.
通過操縱表面皺紋實現(xiàn)可逆的機械變色。

58.Phase Modulation of Self-Gating in Ionic Liquid-Functionalized InSe Field-Effect Transistors.
離子液體功能化 InSe 場效應(yīng)晶體管中自門控的相位調(diào)制。

59.Organic Amine-Bridged Quasi-2D Perovskite/PbS Colloidal Quantum Dots Composites for High-Gain Near-Infrared Photodetectors.
用于高增益近紅外光電探測器的有機胺橋準(zhǔn)二維鈣鈦礦/PbS膠體量子點復(fù)合材料。

60.Targeting One- and Two-Dimensional Ta–Te Structures via Nanotube Encapsulation.
通過納米管封裝瞄準(zhǔn)一維和二維 Ta-Te 結(jié)構(gòu)。

61.Near-Infrared Light-Controlled Activation of Adhesive Peptides Regulates Cell Adhesion and Multidifferentiation in Mesenchymal Stem Cells on an Up-Conversion Substrate.
近紅外光控制的粘附肽激活調(diào)節(jié)上轉(zhuǎn)換基質(zhì)上間充質(zhì)干細(xì)胞的細(xì)胞粘附和多分化。

62.Nonadiabatic Nano-optical Tunneling of Photoelectrons in Plasmonic Near-Fields.
等離激元近場中光電子的非絕熱納米光學(xué)隧道。

63.Identification of an Ultrathin Osteochondral Interface Tissue with Specific Nanostructure at the Human Knee Joint.
人體膝關(guān)節(jié)處具有特定納米結(jié)構(gòu)的超薄骨軟骨界面組織的鑒定。

64.Disentangling Cathodoluminescence Spectra in Nanophotonics: Particle Eigenmodes vs Transition Radiation.
解開納米光子學(xué)中的陰極發(fā)光光譜:粒子本征模與躍遷輻射。

65.Multifunctional Half-Floating-Gate Field-Effect Transistor Based on MoS2–BN–Graphene van der Waals Heterostructures.
基于MoS2-BN-石墨烯范德華異質(zhì)結(jié)構(gòu)的多功能半浮柵場效應(yīng)晶體管。

66.Anisotropic Dzyaloshinskii–Moriya Interaction and Topological Magnetism in Two-Dimensional Magnets Protected by P4?m2 Crystal Symmetry.
P4?m2 晶體對稱保護的二維磁體中的各向異性 Dzyaloshinskii-Moriya 相互作用和拓?fù)浯判浴?/p>
67.Scalable and Versatile Transfer of Sensitive Two-dimensional Materials.
敏感二維材料的可擴展且多功能的傳輸。

68.Crystalline State Determines the Potency of Galectin-10 Protein Assembly to Induce Inflammation.
結(jié)晶狀態(tài)決定 Galectin-10 蛋白組裝誘導(dǎo)炎癥的效力。

69.Tracking Ultrafast Change of Multiterahertz Broadband Response Functions in a Photoexcited Dirac Semimetal Cd3As2 Thin Film.
跟蹤光激發(fā)狄拉克半金屬 Cd3As2 薄膜中多太赫茲寬帶響應(yīng)函數(shù)的超快變化。

70.Plexcitonic Quantum Light Emission from Nanoparticle-on-Mirror Cavities.
鏡腔上納米顆粒的有機量子光發(fā)射。

71.Directivity-Enhanced Detection of a Single Nanoparticle Using a Plasmonic Slot Antenna.
使用等離激元縫隙天線對單個納米粒子進行方向性增強檢測。

72.Antiepilepticus Effects of Tetrahedral Framework Nucleic Acid via Inhibition of Gliosis-Induced Downregulation of Glutamine Synthetase and Increased AMPAR Internalization in the Postsynaptic Membrane.
四面體框架核酸通過抑制神經(jīng)膠質(zhì)增生誘導(dǎo)的谷氨酰胺合成酶下調(diào)和增加突觸后膜中的 AMPAR 內(nèi)化而發(fā)揮抗癲癇作用。

73.Structured Water Molecules on Membrane Proteins Resolved by Atomic Force Microscopy.
通過原子力顯微鏡解析膜蛋白上的結(jié)構(gòu)水分子。

74.Nonlocal Screening Dictates the Radiative Lifetimes of Excitations in Lead Halide Perovskites.
非局部篩選決定鹵化鉛鈣鈦礦激發(fā)的輻射壽命。

75.Ultrahigh-Strength Porous Ceramic Composites via a Simple Directional Solidification Process.
通過簡單的定向凝固工藝獲得超高強度多孔陶瓷復(fù)合材料。

76.Changes in the Form Factor and Size Distribution of Nanogels in Crowded Environments.
擁擠環(huán)境中納米凝膠的形狀因子和尺寸分布的變化。

77.Combating Cancer Stem-Like Cell-Derived Resistance to Anticancer Protein by Liposome-Mediated Acclimatization Strategy.
通過脂質(zhì)體介導(dǎo)的適應(yīng)策略對抗癌癥干細(xì)胞樣細(xì)胞衍生的抗癌蛋白抗性。

78.Enhancing the Reversibility of Lithium Cobalt Oxide Phase Transition in Thick Electrode via Low Tortuosity Design.
通過低扭曲度設(shè)計增強厚電極中鈷酸鋰相變的可逆性。

79.Controlling the Phase Transition in CsPbI3 Nanowires.
控制 CsPbI3 納米線的相變。

80.Optical Vector Vortex Generation by Spherulites with Cylindrical Anisotropy.
具有圓柱各向異性的球晶產(chǎn)生光學(xué)矢量渦旋。

81.Lipoprotein-Inspired Nanoscavenger for the Three-Pronged Modulation of Microglia-Derived Neuroinflammation in Alzheimer’s Disease Therapy.
脂蛋白啟發(fā)的納米清除劑在阿爾茨海默病治療中對小膠質(zhì)細(xì)胞衍生的神經(jīng)炎癥進行三管齊下的調(diào)節(jié)。

82.Stable All-Solid-State Lithium Metal Batteries Enabled by Machine Learning Simulation Designed Halide Electrolytes.
通過機器學(xué)習(xí)仿真設(shè)計的鹵化物電解質(zhì)實現(xiàn)穩(wěn)定的全固態(tài)鋰金屬電池。

83.High-Power Hydro-Actuators Fabricated from Biomimetic Carbon Nanotube Coiled Yarns with Fast Electrothermal Recovery.
由仿生碳納米管卷繞紗線制成的高功率液壓致動器,具有快速電熱恢復(fù)功能。

84.Porous Polyethylene Terephthalate Nanotemplate Electrodes for Sensitive Intracellular Recording of Action Potentials.
用于敏感細(xì)胞內(nèi)動作電位記錄的多孔聚對苯二甲酸乙二醇酯納米模板電極。

85.Conductive Phosphine Oxide Passivator Enables Efficient Perovskite Light-Emitting Diodes.
導(dǎo)電氧化膦鈍化劑可實現(xiàn)高效的鈣鈦礦發(fā)光二極管。

86.Stabilizing Cobalt Single Atoms via Flexible Carbon Membranes as Bifunctional Electrocatalysts for Binder-Free Zinc–Air Batteries.
通過柔性碳膜穩(wěn)定鈷單原子作為無粘合劑鋅空氣電池的雙功能電催化劑。

87.Spatially Controlled Activation of Toll-like Receptor 9 with DNA-Based Nanomaterials.
使用基于 DNA 的納米材料空間控制激活 Toll 樣受體 9。

88.Suppression of Energy Metabolism in Cancer Cells with Nutrient-Sensing Nanodrugs.
用營養(yǎng)感應(yīng)納米藥物抑制癌細(xì)胞的能量代謝。

89.Gradient Architecture Design in Scalable Porous Battery Electrodes.
可擴展多孔電池電極的梯度架構(gòu)設(shè)計。

90.Interfacial Reduction Nucleation of Noble Metal Nanodots on Redox-Active Metal–Organic Frameworks for High-Efficiency Electrocatalytic Conversion of Nitrate to Ammonia.
貴金屬納米點在氧化還原活性金屬有機框架上的界面還原成核,用于硝酸鹽高效電催化轉(zhuǎn)化為氨。

=====================================
由于專欄圖片數(shù)量限制,關(guān)注我的個人公眾號“遠(yuǎn)夢研”查看更多。