03-有理數(shù)為什么有理?

我們之前已經(jīng)復(fù)習(xí)了負數(shù)的概念, 也學(xué)習(xí)了簡單的集合論基礎(chǔ)知識。接下來我們就在這兩個知識點的基礎(chǔ)上,重新梳理認識一下我們所學(xué)習(xí)過的數(shù)。
各種類型的數(shù), 認識有理數(shù)
回想一下,從小學(xué)到初中,我們都學(xué)習(xí)了哪些數(shù)呢?
從小學(xué),我們就學(xué)習(xí)了1,2,3,… 類似這樣的數(shù),我們稱作正整數(shù).
類似 -1, -2, -3 這樣的數(shù),我們稱作負整數(shù).
?我們還有一個特殊的數(shù)零: 0。 0 是整數(shù),但不是正數(shù)也不是負數(shù)。
我們還學(xué)習(xí)過分數(shù):比如1/2,2/3等。仿照正整數(shù)和負整數(shù)的分類分數(shù)也可以分為正分數(shù)和負分數(shù)。
整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)(rational number)。按照上邊的定義,我們就有了下邊的兩個關(guān)系圖:
第一個先分正負,再分是不是整數(shù)
第二個先分整數(shù)和分數(shù),然后再分正負。

從集合的角度認識有理數(shù)
以上的分類看起來非常清晰,我們可以將上述的分類,用集合論的語言來描述一下,然后看一下他們有哪些關(guān)系。之所以用集合論的語言來描述,是為了讓大家更加熟悉數(shù)學(xué)語言,養(yǎng)成良好的嚴謹?shù)牧?xí)慣。

基于上述的關(guān)系圖,我們可以得到一些結(jié)論。 比如:
正整數(shù)集是有理數(shù)集的一個子集
負整數(shù)集也是有理數(shù)集的一個子集
正整數(shù)集和負整數(shù)集的交集是空集
0是有理數(shù)集的一個元素, 也是整數(shù)集的元素
有理數(shù)為什么叫有‘理’數(shù)?
有理數(shù)為什么叫有‘理’數(shù)? 難道它比其他的數(shù)有道理嗎?大家了解了它的歷史和名稱以后,可以更加準確的了解有理數(shù)的概念。
有理數(shù)這一概念最早源自西方《幾何原本》,這本書是拉丁語寫成。拉丁語意為理性、計算。重點注意一下”計算”這個概念, 說明這些說是可以計算出來的。這個其實就是指分數(shù)。
分數(shù), 就是兩個整數(shù)的比值, 比如: 5/6, 3/7等。早先人們就認為分數(shù)是通過整數(shù)計算得到的。
甚至整數(shù), 其實也可以認為是一個整數(shù)除以1計算得到的。

所以,有理數(shù)除了上述的描述性定義,還可以用另外一個定義:能夠表示成兩個整數(shù)的比值的數(shù)。
明末數(shù)學(xué)家徐光啟和學(xué)者利瑪竇翻譯《幾何原本》,前6卷時的底本是拉丁文,他們將這個詞的拉丁文譯為“理”,這個“理”在文言文中的意思是“比值”。
比如: 比例者, 兩幾何以幾何相比之理
翻譯: 比例是兩個幾何物相比的“理”,兩個幾何物,比如兩個數(shù),兩條線,兩個面,兩個體,兩兩同類大小的比稱為比例。譯文中的“理”是指“比值”
明末時期日本落后于我們,常常派使者來我國,這個有理數(shù)的概念也被他們拿走了,但是當時的日本學(xué)者對我國的文言文理解不夠,直接將在文言文中表示“比值”的“理”直譯成了“道理”的“理”。
直到清朝中期我國對有理數(shù)的翻譯并沒有錯,都是“比值”??墒堑搅饲迥?,那時候中國落后于日本,于是清朝派留學(xué)生去日本,居然又將此名詞重新傳回中國,并且一直沿用至今。以至于現(xiàn)在中日兩國都用“有理數(shù)”和“無理數(shù)”這一說法。所以說現(xiàn)在對“有理數(shù)”名稱的理解的疑惑是歷史原因造成的。
有理數(shù)的英文是rational number, 其中ratio 也是代表比例的意思. 這個詞在英語體系中,大概出現(xiàn)在1600年左右。遠遠晚于拉丁文。
古埃及對分數(shù)也有獨特的認識。古埃及分數(shù)是分子為1,分母為正整數(shù)的數(shù)。其他的數(shù)都可以表達為有限個兩兩不等的古埃及分數(shù)的和。例如:
小數(shù)與分數(shù)
不知道大家發(fā)現(xiàn)沒有, 這里邊我們一直在強調(diào)分數(shù), 沒有說小數(shù)
因為: 有些小數(shù)可以劃歸成分數(shù), 比如:
0.25 = 1/4,
0.17 = 17/100
但是有一些數(shù)是不能表示成分數(shù)的。比如圓周率Pi,
這樣的數(shù)就不在有理數(shù)的集合里邊。不是我們當前學(xué)習(xí)的重點。
挑戰(zhàn)一下
1.???? 有兩個集合: 正數(shù)集, 負數(shù)集, 說出下列數(shù)字分別屬于哪個集合?
17, 2/3,?? -4,?? 1009,?? -34,?? -45/197
2.???? 13, 17.89,? 0.15,? -12.8 是小數(shù), 如何用分數(shù)表示?
你能用古埃及的方式表示一下嗎?
?
3.???? 對于以下集合, 請描述他們的關(guān)系 ?
有理數(shù)集,正數(shù)集,負數(shù)集,整數(shù)集,分數(shù)集,
正整數(shù)集,負分數(shù)集 負分數(shù)集, 負整數(shù)集,等
?
4.???? 圓周率Pi 為什么不是有理數(shù)?
?
參考文獻
[1].?Oxford English Dictionary?(2nd?ed.). Oxford University Press. 1989.?Entry?rational,?a. (adv.)?and?n.1, sense 5.a.
[2].?Oxford English Dictionary?(2nd?ed.). Oxford University Press. 1989.?Entry?rational,?a. (adv.)?and?n.1, sense 5.a.
[3]. 人民教育出版社, 九年義務(wù)教科書, 數(shù)學(xué), 七年級上,P6
[4]. 利瑪竇,《幾何原本》,卷五,界說十九則第三界